Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(5): 2375-2385, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31937100

RESUMEN

Time-resolved fluorescence emission and resonance-enhanced second harmonic generation (SHG) spectra were collected from 4-dimethylaminobenzonitrile (DMABN) adsorbed to the aqueous-silica interface in order to identify how strongly associating solvent-substrate interactions change DMABN's photoisomerization properties. In bulk polar solution, DMABN forms an excited twisted intramolecular charge-transfer (TICT) state that emits with a distinctive, solvatochromic fluorescent signature. At the silica-aqueous interface, the TICT fluorescence disappears, similar to DMABN's behavior in nonpolar environments. SHG spectra confirm that the interface is, in fact, polar, and DMABN's unusual fluorescence emission acquired from the interface is attributed to strong hydrogen bonding associations between the water molecules and the silica surface that prevent adsorbate isomerization. Additionally, SHG spectra show a strong resonance at long wavelengths that is unexpected based on bulk absorbance spectra and selection rules for nonlinear hyperpolarizabilities. Using both Zerner's INDO semiempirical and TD-DFT calculations, this spectroscopic behavior is attributed to a combination of strong electric fields present at the aqueous-silica interface and surface-induced changes to DMABN's ground-state molecular structure.

2.
J Chem Phys ; 150(19): 194701, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117767

RESUMEN

Resonantly enhanced second harmonic generation (SHG) spectra of Coumarin 152 (C152) adsorbed at the water-silica interface show that C152 experiences a local dielectric environment slightly more polar than that of bulk water. This result stands in contrast to recently reported time-resolved fluorescence experiments and simulations that suggest an alkane-like permittivity for interfacial water at strongly associating, hydrophilic solid surfaces. Taken together, these results imply that while the static electric field across the aqueous-silica interface may be large, restricted water dynamics lead to apparent nonpolar solvation behavior similar to that experienced by solutes in confinement. Resonance-enhanced SHG spectra and time-resolved fluorescence of C152 adsorbed to aqueous-hydrophobic silica surfaces show that when water's ability to hydrogen bond with the silica surface is eliminated, a solute's interfacial solvation and corresponding ability to photoisomerize converge to an intermediate limit similar to that experienced in bulk acetone or methanol. While water structure and dynamics at solid-liquid interfaces have received considerable attention, results presented below show how strong solvent-substrate interactions can create conflicting pictures of solute reactivity across buried interfaces.

3.
Langmuir ; 34(34): 9946-9949, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30058811

RESUMEN

Time-resolved fluorescence measurements performed in a total internal reflection (TIR) geometry examined the photophysical behavior of coumarin 152 (C152) adsorbed to a silica/aqueous interface. Results imply that interfacial C152 has a remarkably different photoisomerization rate compared to its bulk solution value. C152's fluorescence in bulk water is dominated by a short, sub-nanosecond emission lifetime as the solute readily forms a nonemissive, twisted, intramolecular charge transfer (TICT) state. Time-resolved-TIR data from the silica/aqueous interface show that C152 emission contains a contribution from a longer-lived state (τ = 3.5 ns) that matches C152's fluorescence lifetime in nonpolar solvents where a photoexcited TICT state does not form. This long-lived excited state is assigned to C152 solvated in the interfacial region, where strong substrate-solvent hydrogen bonding prevents the aqueous solvent from stabilizing C152's TICT isomer. Similar results are observed for C152 in frozen water, emphasizing the silica surface's ability to restrict solvent mobility and change the interfacial solvation and reactivity from bulk solution limits.

4.
Chemistry ; 23(56): 14064-14072, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28836708

RESUMEN

Rhodamine spirolactams (RSLs) have recently emerged as popular fluorescent pH probes due to their fluorescence turn-on capability and ease of functionalization at the spirolactam nitrogen. Design of RSLs is often driven by biological targeting or compatibility concerns, rather than the pH sensitivity of the probe, and the relationship between RSL structure and pKa is not well understood. To elucidate the relationship between pKa values and the properties of substituents attached to the spirolactam nitrogen, a series of 19 aniline-derived RSLs is presented. RSLs derived from di-ortho-substituted anilines exhibit pKa tunability across the moderately acidic region (ca. pH 4-6). Evaluation of pKa data using the Fujita-Nishioka model for ortho substituent effects reveals that both steric and electronic substituent properties influence RSL pH responsiveness, with pKa values increasing as substituent size and electron withdrawing character increase. These trends are attributed to changes in the RSL structure induced by large substituents, and to electronic influences on the protonated spirocyclic reaction intermediate. To demonstrate the practical applicability of these probes in completely aqueous environments, RSL-doped conjugated polymer nanoparticles that exhibit a ratiometric fluorescence response to changing pH levels are presented.

5.
Org Biomol Chem ; 12(3): 526-33, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24287714

RESUMEN

Fluorescent turn-on probes based on a rhodamine spirolactam (RSL) structure have recently become a popular means of detecting pH, metal ions, and other analytes of interest. RSLs are colorless and non-fluorescent until the target analyte induces opening of the spirocyclic ring system, revealing the fully conjugated and highly fluorescent rhodamine dye. Among RSLs opened by acid, we have observed wide variation in the kinetics of the fluorescence turn-on process such that some probes would not be usable in situations where a rapid reading is desired or the pH fluctuates temporally. Herein we present a systematic investigation of the fluorescence turn-on kinetics of RSLs to probe the hypothesis that the reaction rates are influenced by the electronic properties of the spirolactam ring system. A series of 8 aniline-derived RSLs with para substituents ranging from electron-donating to electron-withdrawing was prepared from rhodamine B. The fluorescence turn-on rates are observed to increase by a factor of four as the substituent is tuned from methoxy to nitro. This effect is explained in terms of the destabilization of the reaction intermediate by the substituent. As the reaction rates increase across the series, a concomitant increase in fluorescence intensity is also observed. This result is attributed to an increase in the concentration of the fluorescent form of the dye and is consistent with the expected equilibrium properties of this system. These findings are applied to the design of a faster-reacting and more intensely fluorescent RSL pH probe.


Asunto(s)
Colorantes Fluorescentes/química , Rodaminas/química , Concentración de Iones de Hidrógeno , Cinética , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...