Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mil Med ; 188(Suppl 6): 458-465, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37948251

RESUMEN

INTRODUCTION: The evolution of military helmet devices has increased the amount of head-supported mass (HSM) worn by warfighters. HSM has important implications for spine biomechanics, and yet, there is a paucity of studies that investigated the effects of differing HSM and accelerative profiles on spine biomechanics. The aim of this study is to investigate the segmental motions in the subaxial cervical spine with different sizes of HSM under Gx accelerative loading. METHODS: A three-dimensional finite element model of the male head-neck spinal column was used. Three different size military helmets were modeled and incorporated into head-neck model. The models were exercised under Gx accelerative loading by inputting low and high pulses to the cervical vertebra used in the experimental studies. Segmental motions were obtained and normalized with respect to the non-HSM case to quantify the effect of HSM. RESULTS: Segmental motions increased with an increase in velocity at all segments of the spine. Increasing helmet size resulted in larger motion increases. Angulations ranged from 0.9° to 9.3° at 1.8 m/s and from 1.3° to 10.3° at 2.6 m/s without a helmet. Helmet increased motion between 5% to 74% at 1.8 m/s. At 2.6 m/s, the helmet increased segmental motion anywhere from 10% to 105% in the subaxial cervical spine. The greatest motion was seen at the C5-C6 level, followed by the C6-C7 level. CONCLUSIONS: The subaxial cervical spine experiences motion increases at all levels at both velocity profiles with increasing HSM. Larger helmet and greater impact velocity increased motion at all levels, with C5-C6 demonstrating the largest range of motion. HSM should be minimized to reduce the risk of cervical spine injury to the warfighter.


Asunto(s)
Vértebras Cervicales , Traumatismos Vertebrales , Humanos , Masculino , Vértebras Cervicales/lesiones , Cuello , Fenómenos Biomecánicos , Traumatismos Vertebrales/etiología , Cabeza , Rango del Movimiento Articular
2.
N Am Spine Soc J ; 15: 100246, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37636342

RESUMEN

Background Context: Finite element modeling (FEM) is an established tool to analyze the biomechanics of complex systems. Advances in computational techniques have led to the increasing use of spinal cord FEMs to study cervical spinal cord pathology. There is considerable variability in the creation of cervical spinal cord FEMs and to date there has been no systematic review of the technique. The aim of this study was to review the uses, techniques, limitations, and applications of FEMs of the human cervical spinal cord. Methods: A literature search was performed through PubMed and Scopus using the words finite element analysis, spinal cord, and biomechanics. Studies were selected based on the following inclusion criteria: (1) use of human spinal cord modeling at the cervical level; (2) model the cervical spinal cord with or without the osteoligamentous spine; and (3) the study should describe an application of the spinal cord FEM. Results: Our search resulted in 369 total publications, 49 underwent reviews of the abstract and full text, and 23 were included in the study. Spinal cord FEMs are used to study spinal cord injury and trauma, pathologic processes, and spine surgery. Considerable variation exists in the derivation of spinal cord geometries, mathematical models, and material properties. Less than 50% of the FEMs incorporate the dura mater, cerebrospinal fluid, nerve roots, and denticulate ligaments. Von Mises stress, and strain of the spinal cord are the most common outputs studied. FEM offers the opportunity for dynamic simulation, but this has been used in only four studies. Conclusions: Spinal cord FEM provides unique insight into the stress and strain of the cervical spinal cord in various pathological conditions and allows for the simulation of surgical procedures. Standardization of modeling parameters, anatomical structures and inclusion of patient-specific data are necessary to improve the clinical translation.

3.
Biomech Model Mechanobiol ; 22(6): 1789-1799, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37306885

RESUMEN

Degenerative cervical myelopathy (DCM) is the commonest cause of spinal cord dysfunction in older adults and is characterized by chronic cervical spinal cord compression. Spinal cord stress and strain during neck motion are also known contributors to the pathophysiology of DCM, yet these factors are not routinely assessed for surgical planning. The aim of this study was to measure spinal cord stress/strain in DCM using patient-specific 3D finite element models (FEMs) and determine whether spinal cord compression is the primary determinant of spinal cord stress/strain. Three-dimensional patient-specific FEMs were created for six DCM patients (mild [n = 2], moderate [n = 2] and severe [n = 2]). Flexion and extension of the cervical spine were simulated with a pure moment load of 2 Nm. Segmental spinal cord von Mises stress and maximum principal strain were measured. Measures of spinal cord compression and segmental range of motion (ROM) were included in a regression analysis to determine associations with spinal cord stress and strain. Segmental ROM in flexion-extension and axial rotation was independently associated with spinal cord stress (p < 0.001) and strain (p < 0.001), respectively. This relationship was not seen for lateral bending. Segmental ROM had a stronger association with spinal stress and strain as compared to spinal cord compression. Compared to the severity of spinal cord compression, segmental ROM is a stronger determinant spinal cord stress and strain. Surgical procedures that address segmental ROM in addition to cord compression may best optimize spinal cord biomechanics in DCM.


Asunto(s)
Compresión de la Médula Espinal , Enfermedades de la Médula Espinal , Humanos , Anciano , Análisis de Elementos Finitos , Médula Espinal , Vértebras Cervicales/cirugía , Rango del Movimiento Articular , Fenómenos Biomecánicos
4.
Ann Biomed Eng ; 51(5): 1040-1051, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36538274

RESUMEN

Degenerative cervical myelopathy (DCM) is the commonest cause of cervical spinal cord dysfunction in older adults and is characterized by spinal cord compression and stress during neck motion. Although surgical decompression eliminates static spinal cord compression, cord stress resulting from flexion-extension motion of the spinal column has not been determined for single and multi-level surgical interventions. The effect of surgery on spinal cord stress is expected to change with the number of surgical levels as well as patient-specific anatomy. Using a MRI-derived patient-specific finite element model, we simulated 1-, 2- and 3-level anterior cervical diskectomy and fusion (ACDF) surgery for DCM. A substantial decrease in spinal cord stress at the level of spinal cord decompression was noted in all simulations. This was associated with a considerable increase in spinal cord stress rostral to the surgical level, and the magnitude of stress was higher in multi-level surgery. Increased spinal cord stress at the rostral adjacent segment correlated with increased segmental range of motion (r = 0.69, p = 0.002) and disk pressure (r = 0.57, p = 0.05). Together, these results indicate that ACDF for DCM is associated with adverse spinal cord stress patterns adjacent to the fusion construct, and further research is needed to determine if the altered stress is associated with clinical outcomes after surgery for DCM.


Asunto(s)
Compresión de la Médula Espinal , Fusión Vertebral , Humanos , Anciano , Compresión de la Médula Espinal/cirugía , Análisis de Elementos Finitos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Discectomía/métodos , Fusión Vertebral/métodos , Rango del Movimiento Articular
5.
J Eng Sci Med Diagn Ther ; 5(4): 041004, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36353251

RESUMEN

While many studies have been conducted to delineate the role of gender in rear impact via experiments, clinical investigations, modeling, and epidemiological research, the effect of the added head mass on segmental motions has received less attention. The objective of the study is to determine the role of the head supported mass on the segmental motions and loads on the cervical spinal column from rear impact loading. The study used finite element modeling. The model was subjected to mesh convergence studies. It was validated with human cadaver experimental data by applying the rear impact acceleration pulse to the base of the spine. At all levels of the subaxial spinal column, a comparison was made between male and female spines and with and without the use of an army combat helmet. For this purpose, segmental motions, forces, and bending moments were used as biomechanical parameters. Results showed that female spines responded with increased motions than males, and the presence of a helmet increased motions and loads in males and female spines at all levels. Numerical data are given. Head supported mass affects spine responses at all levels. The present computational modeling study, from one geometry for the male spine and one geometry for the female spine (limitations are addressed in the paper), provided insights into the mechanisms of the internal load transfer with the presence of head supported mass, prevalent in certain civilian occupations and active-duty Service members in the military.

6.
Neurospine ; 19(2): 385-392, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35577338

RESUMEN

OBJECTIVE: Pseudarthrosis and adjacent segment degeneration (ASD) are 2 common complications after multilevel anterior cervical discectomy and fusion (ACDF). We aim to identify the potential biomechanical factors contributing to pseudarthrosis and ASD following 3-level ACDF using a cervical spine finite element model (FEM). METHODS: A validated cervical spine FEM from C2 to C7 was used to study the biomechanical factors in cervical spine intervention. The FEM model was used to simulate a 3-level ACDF with intervertebral spacers and anterior cervical plating with screw fixation from C4 to C7. The model was then constrained at the inferior nodes of the T1 vertebra, and physiological loads were applied at the top vertebra. The pure moment load of 2 Nm was applied in flexion, extension, and lateral bending. A follower axial force of 75 N was applied to reproduce the weight of the cranium and muscle force, was applied using standard procedures. The motion-controlled hybrid protocol was utilized to comprehend the adjustments in the spinal biomechanics. RESULTS: Our cervical spine FEM demonstrated that the cranial adjacent level (C3-4) had significantly more increase in range of motion (ROM) (+90.38%) compared to the caudal adjacent level at C7-T1 (+70.18%) after C4-7 ACDF, indicating that the cranial adjacent level has more compensatory increase in ROM than the caudal adjacent level, potentially predisposing it to earlier ASD. Within the C4-7 ACDF construct, the C6-7 level had the least robust fixation during fixation compared to C4-5 and C5-6, as reflected by the smallest reduction in ROM compared to intact spine (-71.30% vs. -76.36% and -77.05%, respectively), which potentially predisposes the C6-7 level to higher risk of pseudarthrosis. CONCLUSION: Biomechanical analysis of C4-7 ACDF construct using a validated cervical spine FEM indicated that the C3-4 has more compensatory increase in ROM compared to C7-T1, and C6-7 has the least robust fixation under physiological loads. These findings can help spine surgeons to predicate the areas with higher risks of pseudarthrosis and ASD, and thus developing corresponding strategies to mitigate these risks and provide appropriate preoperative counseling to patients.

7.
Traffic Inj Prev ; 22(sup1): S137-S140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34699297

RESUMEN

OBJECTIVE: It is well known that the biomechanical responses of female and male spines are different in rear impacts. Female-specific finite element models are being developed as improvements over generic models. Such advancements need female-specific segmental responses for validation. The objectives of the study were to develop vertebral level-specific range of motion corridors from female human cadaver head-neck complexes exposed to rear impact loading. METHODS: Previously conducted experiments from five human cadaver head-neck complexes were used in this analysis-based study. Briefly, the female head-neck complexes were isolated at the second thoracic vertebral level from the whole body such that the skin and the surrounding tissues of the osteoligamentous complex were intact. The distal end was fixed to the platform of a min-sled testing device. The anterior angulation of T1 was at 25 degrees with respect to the horizontal axis to simulate the normal driver posture. The occipital condyles were directly superior to the T1 body, and the Frankfort plane was horizontal. Rear impact loading were applied at a velocity of 2.6 m/s. The range of motion was defined as the inter-segmental angle at each level of the subaxial spinal column, and it was obtained by tracking the motion of the retroreflective targets that were secured on vertebral bodies and lateral masses of C2 through C7 vertebrae. Data were normalized with respect to the fifth percentile female total body mass, and corridors were developed using the equal stress equal velocity approach and expressed as mean ± 1 standard deviation corridors for each segment. RESULTS: The segmental motions of the subaxial cervical spinal column were such that the upper regions responded with flexion while the lower regions responded with extension during the initial accelerative loading phase of the impact, resulting in a non-physiological curvature. During the later phase, all segments were in extension. individual corridors are presented as temporal responses in the body of the manuscript. A comparison of the mean temporal responses at each segment are presented to depict the angulation motion differences within the spinal column. CONCLUSIONS: The present corridors are unique to the female spines. Because female spines have significantly (p < 0.05) different biomechanical responses when compared to male spines, local anatomical differences exist between male and female spines, and field data and clinical studies show female bias to whiplash associated disorders under the rear impact of loading, the present set of corridors serve as a fundamental dataset for the validation of female-specific finite element models. Current computational models can also use these corridors for improved validation to add confidence in their outputs.


Asunto(s)
Accidentes de Tránsito , Lesiones por Latigazo Cervical , Fenómenos Biomecánicos , Vértebras Cervicales/fisiología , Femenino , Humanos , Masculino , Rango del Movimiento Articular
8.
Clin Biomech (Bristol, Avon) ; 89: 105451, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34455338

RESUMEN

BACKGROUND: Studies on the role of uncinate process have been limited to responses of the intact spine and patient's outcomes, and procedures to perform the excision. The aim of this study was to determine the role of uncinate process on the biomechanical response at the index and adjacent levels in three artificial discs used in cervical disc arthroplasty. METHODS: A validated finite element model of cervical spine was used. Flexion, extension, and lateral moments and follower load were applied to Bryan, Mobi-C, and Prestige LP artificial discs at C5-C6 level with and without uncinate process. Ranges of motion at index level and adjacent caudal and cranial segments, intradiscal pressures at adjacent segments, and facet loads at index level and adjacent segments were obtained. Data were normalized with respect to the preservation of uncinate process. FINDINGS: Uncinate process removal increased motions up to 27% at index and decreased up to 10% at adjacent levels, decreased disc pressures up to 14% at adjacent segments, decreased facet loads at adjacent segments up to 14%, while at index level, change in loads depended on mode and arthroplasty, with Mobi-C responding with up to 51% increase and Bryan disc up to 11% decrease, while Prestige LP increased loads by 17% in extension and decreased by 9%% in lateral bending. INTERPRETATION: As surgical selection is based on morphology and surgeon's experience, the present computational findings provide quantitative information for an optimal choice of the device and procedure, while further studies (in vitro/clinical) would be required.


Asunto(s)
Disco Intervertebral , Fusión Vertebral , Artroplastia , Fenómenos Biomecánicos , Vértebras Cervicales/cirugía , Análisis de Elementos Finitos , Humanos , Disco Intervertebral/cirugía , Rango del Movimiento Articular
9.
Mil Med ; 186(Suppl 1): 625-631, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33499473

RESUMEN

INTRODUCTION: It is important to determine the local forces and moments across the entire cervical spine as dysfunctions such as spondylosis and acceleration-induced injuries are focused on specific levels/segments. The aims of the study were to determine the axial and shear forces and moments at each level under G-x accelerative loading for female and male spines. METHODS: A three-dimensional finite element model of the male head-cervical spinal column was developed. G-x impact acceleration was applied using experimental data from whole body human cadaver tests. It was validated with experimental head kinematics. The model was converted to a female model, and the same input was applied. Segmental axial and shear forces and moments were obtained at all levels from C2 to T1 in male and female spines. RESULTS: The time of occurrence of peak axial forces in male and female spines ranged from 37 to 41 ms and 31 to 35 ms. The peak times for the shear forces in male and female spines ranged from 65 to 86 ms and 58 to 78 ms. The peak times for the bending moment ranged from 79 to 91 ms for male and 75 to 83 ms for female spines. Other data are given. CONCLUSIONS: All metrics reached their peaks earlier in female than male spines, representing a quicker loading in the female spine. Peak magnitudes were also lower in the female spines. Moments and axial forces varied differently compared to the shear forces in the female spine, suggesting that intersegmental loads vary nonuniformly. Effects of head inertia contributed to the greatest increase in axial force under this impact acceleration vector. Because female spines have a lower biomechanical tolerance to injury, female spines may be more vulnerable to injury under this load vector.


Asunto(s)
Aceleración , Vértebras Cervicales , Fenómenos Biomecánicos , Cadáver , Femenino , Cabeza , Humanos , Masculino , Cuello
10.
Mil Med ; 186(Suppl 1): 737-744, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33499493

RESUMEN

INTRODUCTION: Cervical disc arthroplasty (CDA), a motion-preserving alternative to anterior cervical discectomy and fusion (ACDF), is used in military patients for the treatment of disorders such as spondylosis. Since 2007, the FDA has approved eight artificial discs. The objective of this study is to compare the biomechanics after ACDF and CDA with two FDA-approved devices of differing designs under head and head supported mass loadings. MATERIALS AND METHODS: A previously validated osteoligamentous C2-T1 finite element model was used to simulate ACDF and two types of CDA (Bryan and Prodisc C) at the C5-C6 level. The hybrid loading protocol associated with in vivo head and head supported mass was used to apply flexion and extension loading. First, intact spine was subjected to 2 Nm of flexion extension and the range of motion (ROM) was measured. Next, for each surgical option, flexion-extension moments duplicating the same ROM as the intact spine were determined. Under these surgery-specific moments, ROM and facet force were obtained at the index level, and ROM, facet force, and intradiscal pressure at the rostral and caudal adjacent levels. RESULTS: ACDF led to increased motion, force and pressures at the adjacent levels. Prodisc C led to increased motion and facet force at the index level, and decreased motion, facet force, and intradiscal pressure at both adjacent levels. Bryan produced less dramatic biomechanical alterations compared with ACDF and Prodisc C. Numerical results are given in the article. CONCLUSIONS: Recognizing that ROM is a clinical measure of spine stability/performance, CDA demonstrates a more physiological biomechanical response than ACDF, although the exact pattern depends on the implant design. Anterior and posterior column load-sharing patterns were different between the two implants and may affect implant selection based on the anatomical and pathological state at the index and adjacent levels.


Asunto(s)
Fusión Vertebral , Artroplastia , Fenómenos Biomecánicos , Vértebras Cervicales/cirugía , Discectomía , Análisis de Elementos Finitos , Humanos , Degeneración del Disco Intervertebral/cirugía , Rango del Movimiento Articular
11.
J Eng Sci Med Diagn Ther ; 4(2): 021004, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35832636

RESUMEN

Many artificial discs for have been introduced to overcome the disadvantages of conventional anterior discectomy and fusion. The purpose of this study was to evaluate the performance of different U.S. Food and Drug Administration (FDA)-approved cervical disc arthroplasty (CDA) on the range of motion (ROM), intradiscal pressure, and facet force variables under physiological loading. A validated three-dimensional finite element model of the human intact cervical spine (C2-T1) was used. The intact spine was modified to simulate CDAs at C5-C6. Hybrid loading with a follower load of 75 N and moments under flexion, extension, and lateral bending of 2 N·m each were applied to intact and CDA spines. From this work, it was found that at the index level, all CDAs except the Bryan disc increased ROM, and at the adjacent levels, motion decreased in all modes. The largest increase occurred under the lateral bending mode. The Bryan disc had compensatory motion increases at the adjacent levels. Intradiscal pressure reduced at the adjacent levels with Mobi-C and Secure-C. Facet force increased at the index level in all CDAs, with the highest force with the Mobi-C. The force generally decreased at the adjacent levels, except for the Bryan disc and Prestige LP in lateral bending. This study demonstrates the influence of different CDA designs on the anterior and posterior loading patterns at the index and adjacent levels with head supported mass type loadings. The study validates key clinical observations: CDA procedure is contraindicated in cases of facet arthroplasty and may be protective against adjacent segment degeneration.

12.
Asian Spine J ; 15(3): 283-293, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33108850

RESUMEN

STUDY DESIGN: The study examined and compared four artificial cervical disks using validated finite element models. PURPOSE: To compare and contrast the biomechanical behavior of four artificial cervical disks by determining the external (range of motion) and internal (facet force and intradiscal pressure) responses following cervical disc arthroplasty (CDA) and to elucidate any device design effects on cervical biomechanics. OVERVIEW OF LITERATURE: Despite CDA's increasing popularity most studies compare the CDA procedure with anterior cervical discectomy and fusion. There is little comparative evaluation of different artificial disks and, therefore, little understanding of how varying disk designs may influence spinal biomechanics. METHODS: A validated C2-T1 finite element model was subjected to flexion-extension. CDAs were simulated at the C5-C6 level with the Secure-C, Mobi-C, Prestige LP, and Prodisc C prosthetic disks. We used a hybrid loading protocol to apply sagittal moments. Normalized motions at the index and adjacent levels, and intradiscal pressures and facet column loads were also obtained. RESULTS: The ranges of motion at the index level increased after CDA. The Mobi-C prosthesis demonstrated the highest amount of flexion, followed by the Secure-C, Prestige LP, and Prodisc C. The Secure-C demonstrated the highest amount of extension, followed by the Mobi-C, Prodisc C, and Prestige LP. The motion decreased at the rostral and caudal adjacent levels. Facet forces increased at the index level and decreased at the rostral and caudal adjacent levels following CDA. Intradiscal pressures decreased at the adjacent levels for the Mobi-C, Secure-C, and Prodisc C. Conversely, the use of the Prestige LP increased intradiscal pressure at both adjacent levels. CONCLUSIONS: While all artificial disks were useful in restoring the index level motion, the Secure-C and Mobi-C translating abilities allowed for lower intradiscal pressures at the adjacent segments and may be the driving mechanism for minimizing adjacent segment degenerative arthritic changes. The facet joint integrity should also be considered in the clinical decision-making process for CDA selection.

13.
J Mech Behav Biomed Mater ; 106: 103735, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32321632

RESUMEN

Surgical treatment for spinal disorders, such as cervical disc herniation and spondylosis, includes the removal of the intervertebral disc and replacement of biological or artificial materials. In the former case, bone graft is used to fill the space, and this conventional procedure is termed anterior cervical discectomy and fusion (ACDF). The latter surgery is termed as artificial disc replacement ADR) or cervical disc arthroplasty (CDA). Surgeries are most commonly performed at one or two levels. The present study was designed to determine the external (range of motion, ROM) and internal (anterior and posterior load sharing) responses of the spines with one-level and two-level surgeries in both models (ACDF and CDA) using a previously validated finite element model (FEM) of the subaxial cervical spinal column. The FEM simulated the vertebra (cancellous core and cortical shell of the body, posterior elements - laminae, pedicles and spinous processes), discs (anulus fibers, ground substance, and nucleus pulposus), anterior and posterior ligaments of the disc and facet joints, and interspinous and supraspinous ligaments. Appropriate material properties were assigned to the spinal components. The United States Food Drug Administration-approved Mobi-C was used for the CDA option. The FEM was exercised under pure flexion and extension moment loading of 2 Nm in the intact state. The overall ROM of the column was obtained. The hybrid loading protocol applied moments that matched the ROM in the intact spine for both one-level (C5-C6) and two-level (C5-C7) ACDF and CDA surgeries. ROM at the level(s) of surgery, termed the index level was obtained. These data along with anterior column load (ACL) and posterior column load (PCL) sharing were obtained for all surgical options at superior and inferior segments (termed adjacent segment outputs). Results for both one-level and two-level surgeries showed that ACDFs decreases ROM at the index level, while CDAs increase motions compared to the intact normal spine. The ROM, ACL, and PCL increased at both adjacent levels for the ACDF while CDA showed a decrease. Although two-level surgeries resulted in increased these biomechanical variables, greater changes to adjacent segment biomechanics in ACDF may accelerate adjacent segment disease. Decreased ROM and lower load sharing in CDAs may limit adjacent segment effects such as accelerated degeneration. Their increased posterior load sharing, however, may need additional attention for patients with suspected facet joint disease.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Fusión Vertebral , Artroplastia , Fenómenos Biomecánicos , Vértebras Cervicales/cirugía , Discectomía , Análisis de Elementos Finitos , Humanos , Disco Intervertebral/cirugía , Rango del Movimiento Articular
14.
J Craniovertebr Junction Spine ; 11(4): 269-275, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33824556

RESUMEN

AIMS AND OBJECTIVES: The human spine degenerates with age. Intervertebral disc degeneration occurs in the cervical spine. The objective of this study is to determine the effects of degenerative disc diseases on the range of motion (ROM) of the human cervical spinal column using a validated finite-element model. MATERIALS AND METHODS: The validated intact and healthy C2-T1 finite-element model simulated the cortical shell, cancellous core, posterior elements of the vertebrae, and spinal ligaments (longitudinal, capsular, spinous and ligamentum flava, and nucleus and annulus of the discs). Three different stages of the disc disease, that is, mild, moderate, and severe, were simulated at the C5-C6, C6-C7, and C5-C6-C7 discs, respectively, and they were termed as upper single level, lower single level, and bi-level (BL) models, respectively. The material properties and geometry of the disc(s) were altered to simulate the different stages of degeneration. The external mechanical loading was applied in the sagittal mode, via flexion-extension motions and the magnitude was 2.0 Nm for each mode. They were applied to each of the healthy and disc degeneration models, and for each of the three severities of degeneration. The ROM at adjacent and index levels was extracted and normalized with respect to the healthy (baseline) spine. RESULTS: A nonuniform distribution in the ROM was found for different disc degeneration states, segmental levels, and flexion-extension loading modes. The specific results for each and level are reported in the results section of the paper. CONCLUSION: Closer follow-up times may be necessary in symptomatic patients with progressive disease, especially with BL involvements.

15.
Eur Spine J ; 29(11): 2631-2639, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31606816

RESUMEN

PURPOSE: The purpose of the study is to examine the biomechanical alterations in the index and adjacent levels of the human cervical spine after cervical arthroplasty with Bryan, Prodisc C, or Prestige LP. METHODS: A previously validated C2-T1 osteoligamentous finite element model was used to perform virtual C5-6 arthroplasty using three different FDA-approved artificial cervical discs. Motion-controlled moment loading protocol was used. Moment was varied until Bryan, Prodisc C, and Prestige LP models displayed the same total range of motion across C3-C7 as the intact spine model at 2 Nm of pure moment loading. Range of motion (ROM) and facet force (FF) were recorded at the index level. ROM, FF, and intradiscal pressure (IDP) were recorded at the adjacent levels. RESULTS: Prodisc C and Prestige LP led to supraphysiologic ROM and FF at the index level while decreasing ROM and FF at the adjacent levels. In contrast, Bryan reduced ROM and FF at the index level. Bryan increased ROM and FF at the adjacent levels in flexion, but decreased ROM and FF in the adjacent levels in extension. Prodisc C decreased IDP at the adjacent levels. Bryan reduced IDP in extension only. Prestige LP increased adjacent-level IDP. CONCLUSIONS: The distinct designs and material compositions of the three artificial discs result in varying biomechanical alterations at the index and adjacent levels in the cervical spine after implantation. The findings confirm the design and material influence on the spine biomechanics, as well as the advantages and contraindications of cervical arthroplasty in general. These slides can be retrieved under Electronic Supplementary Material.


Asunto(s)
Vértebras Cervicales , Disco Intervertebral , Artroplastia , Fenómenos Biomecánicos , Vértebras Cervicales/cirugía , Análisis de Elementos Finitos , Humanos , Disco Intervertebral/cirugía , Rango del Movimiento Articular
16.
Traffic Inj Prev ; 20(sup2): S179-S182, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31674854

RESUMEN

Objective: This study seeks to determine compression (Cmax) and compression-related injury variables (velocity and viscous injury criterion: Vmax and VCmax) from chestband data in pure lateral and oblique far-side impact sled tests.Methods: The 3-point belt-restrained mid-sized male Test Device for Human Occupant Restraint (THOR) dummy was placed on a buck and subjected to side impacts with and without center-mounted airbags. The change in velocity was 8.3 m/s for all conditions. Two chestbands were routed around the outer circumference of the THOR at the levels of the third and sixth ribs. Maximum chest deflections were computed using strain gauge signals from the chestbands and their temporal contours. Three methods were used to determine deflection metrics. The first method paralleled methods used in previously published human cadaver studies; the second method used the actual anchor point location and actual alignment of the dummy's internal sensors; and the third method used the anchor location of the internal sensor but determined the sensor's locations on the contour confining to the aspect of the sensor. These 3 approaches are abbreviated as the SD, ID, and TD variables. The injury variables Cmax, Vmax, and VCmax were determined according to accepted procedures. Their peak magnitudes were extracted and an evaluation of their accuracy was made based on the SD method.Results: The average SD-based Cmax magnitudes for the upper and lower chest levels were 0.12 and 0.17 m/s, the Vmax magnitudes were 5.3 and 1.8 m/s, and the VCmax magnitudes were 0.24 and 0.15 m/s, respectively. Other data are given for all variables at the 2 levels of the thorax in the body of this paper. The ID-based peak variables were the lowest, and this observation was true regardless of the aspect, right or left side. In contrast, the SD method produced the greatest magnitudes of the variables. The VCmax variable had the greatest normalized difference among all 3 injury variables.Conclusions: Though the present study is limited in scope, the predetermined placement of the internal sensors in the THOR dummy underpredicted chest deflection-related injury variables, and the viscous criterion was the least reliable variable in these lateral and oblique far-side impact sled tests.


Asunto(s)
Accidentes de Tránsito/estadística & datos numéricos , Airbags/estadística & datos numéricos , Maniquíes , Cinturones de Seguridad , Traumatismos Torácicos/etiología , Fenómenos Biomecánicos
17.
Traffic Inj Prev ; 20(sup1): S32-S37, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31381439

RESUMEN

Objective: The focus of this study is side impact. Though occupant injury assessment and protection in nearside impacts has received considerable attention and safety standards have been promulgated, field studies show that a majority of far-side occupant injuries are focused on the head and thorax. The 50th percentile male Test Device for Human Occupant Restraint (THOR) has been used in oblique and lateral far-side impact sled tests, and regional body accelerations and forces and moments recorded by load cells have been previously reported. The aim of this study is to evaluate the chestband-based deflection responses from these tests. Methods: The 3-point belt-restrained 50th percentile male THOR dummy was seated upright in a buck consisting of a rigid flat seat, simulated center console, dashboard, far-side side door structure, and armrest. It was designed to conduct pure lateral and oblique impacts. The center console, dashboard, simulated door structure, and armrest were covered with energy-absorbing materials. A center-mounted airbag was mounted to the right side of the seat. Two 59-gage chestbands were routed on the circumference of the thorax, with the upper and lower chestbands at the level of the third and sixth ribs, respectively, following the rib geometry. Oblique and pure lateral far-side impact tests with and without airbags were conducted at 8.3 m/s. Maximum chest deflections were computed by processing temporal contours using custom software and 3 methods: Procedures paralleling human cadaver studies, using the actual anchor point location and actual alignment of the InfraRed Telescoping Rods for the Assessment of Chest Compression (IR-TRACC) in the dummy on each aspect-that is, right or left,-and using the same anchor location of the internal sensor but determining the location of the peak chest deflection on the contour confined to the aspect of the sensor; these were termed the SD, ID, and TD metrics, respectively. Results: All deformation contours at the upper and lower thorax levels and associated peak deflections are given for all tests. Briefly, the ID metrics were the lowest in magnitude for both pure lateral and oblique modes, regardless of the presence or absence of an airbag. This was followed by the TD metric, and the SD metric produced the greatest deflections. Conclusion: The chestbands provide a unique opportunity to compute peak deflections that parallel current IR-TRACC-type deflections and allow computation of peak deflections independent of the initial point of attachment to the rib. The differing locations of the peak deflection vectors along the rib contours for different test conditions suggest that a priori attachment is less effective. Further, varying magnitudes of the differences between ID and TD metrics underscore the difficulty in extrapolating ID outputs under different conditions: Pure lateral versus oblique, airbag presence, and thoracic levels. Deflection measurements should, therefore, not be limited to an instrument that can only track from a fixed point. For improved predictions, these results suggest the need to investigate alternative techniques, such as optical methods to improve chest deflection measurements for far-side occupant injury assessment and mitigation.


Asunto(s)
Accidentes de Tránsito/estadística & datos numéricos , Maniquíes , Tórax/fisiología , Fenómenos Biomecánicos , Humanos , Masculino
18.
J Mech Behav Biomed Mater ; 90: 681-688, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30529569

RESUMEN

Experiments have been conducted using isolated tissues of the spine such as ligaments, functional units, and subaxial cervical spine columns. Forces and or moments under external loading can be obtained at the ends of these isolated/segmented preparations; however, these models require fixations at the end(s). To understand the response of the entire cervical spine without the artificial boundary/end conditions, it is necessary to use the whole body human cadaver in the experimental model. This model can be used to obtain the overall kinematics of the head and neck. The forces and moments at each vertebral level of the cervical column segments cannot be directly obtained using the kinematic and mass property data. The objective of this study was to determine such local loads under simulated frontal impact loading using a validated head-neck finite element model and experiments from whole body human cadaver tests, at velocities ranging from 3.9 to 16 m/s. The specimens were prepared with a nine linear accelerometer package on the head, and a triaxial accelerometer with a triaxial angular rate sensor on T1, and a set of three non-collinear retroreflective targets were secured to the T1 using the accelerometer mount. A similar array of targets was attached to the skull. Head accelerations were computed at the center of gravity of the head using specimen-specific physical properties. Upper and lower neck forces were computed using center of gravity acceleration data. This dataset was used to verify a previously validated finite element model of the head-neck model by inputting the mean T1 accelerations at different velocities. The model was parametrically exercised from 4 to 16 m/s in increments of 3 m/s to determine the forces and moments in the local anatomical system at all spinal levels. Results indicated that, with increasing velocities, the axial loading was found to be level-invariant, while the shear force and moment responses depended on the level. The nonuniform developments of the segmental forces and moments across different spinal levels suggest a shift in instantaneous axis of rotations between the across different spinal levels. Such differential changes between contiguous levels may lead to local spinal instability, resulting in long-term effects such as accelerated degeneration and spondylosis. The study underscored the need to conduct additional research to include effects of posture and geometrical variations that exist between males and females for a more comprehensive understanding of the local load-sharing in frontal impacts.


Asunto(s)
Cadáver , Vértebras Cervicales , Análisis de Elementos Finitos , Ensayo de Materiales , Fenómenos Mecánicos , Fenómenos Biomecánicos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...