Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World Allergy Organ J ; 16(12): 100847, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38075553

RESUMEN

Background: The level of environmental exposure throughout life may contribute to the prevalence of allergic sensitization and allergic disease. The alpine climate has been considered a healthy climate with little allergen exposure and pollution. We conducted a cross-sectional study to investigate local environmental exposure and concomitant prevalence of allergic sensitization among local school children born and raised in an alpine environment. Methods: Clinical and demographic data were collected with a questionnaire. Allergen content was assessed in residential settled dust samples, lifetime exposure to pollen and air pollution was calculated using data from national pollen and air pollution monitoring stations, and the allergic sensitization profile was determined with component resolved diagnostics (ISAC®). Univariate and multivariate regression models were used to estimate the relation between exposure and sensitization. Results: In a cohort of children born and raised in an alpine environment, sensitization to aeroallergens is quite common (38%), especially to grass (33%) and cat (16%). House dust mite allergen was detected in up to 38% of residential dust samples, but sensitization to HDM was low (2.5%). Pollutant levels were low, but an increasing trend was observed in the amount of ozone and PM10. Living close to a busy road was associated with increased odds OR (95% CI) for being sensitized to any allergen 2.7 (1.0-7.2), to outdoor allergens 2.8 (1.1-7.1) and being sensitized plus reporting symptoms of rhinoconjunctivitis 4.4 (1.3-14.8) and asthma 5.5 (1.4-21). Indoor living conditions, including the presence of visible mold, increased the odds of being sensitized to indoor allergens (1.9 (1.1-3.2) and being sensitized plus reporting symptoms of rhinoconjunctivitis 1.9 (1.0-3.6) and asthma 2.1 (1.0-4.1). Conclusion: In a healthy alpine environment, pollution might still be an important factor contributing to allergic sensitization.

2.
Clin Transl Allergy ; 12(4): e12137, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35474731

RESUMEN

Background: Indoor allergens (i.e. from mite, cat and dog) are carried by airborne particulate matter. Thus, removal of particles would reduce allergen exposure. This work aims to assess the performance of air filtration on particulate matter and thus allergen removal in 22 bedrooms. Methods: Indoor air was sampled (with and without air filtration) with a cascade impactor and allergens were measured using enzyme-linked immunosorbent assay (ELISA). Particulate matter (including ultrafine particles) was also monitored. Results: The median of allergen reduction was 75.2% for Der f 1 (p < 0.001, n = 20), 65.5% for Der p 1 (p = 0.066, n = 4), 76.6% for Fel d 1 (p < 0.01, n = 21) and 89.3% for Can f 1 (p < 0.01, n = 10). For size fractions, reductions were statistically significant for Der f 1 (all p < 0.001), Can f 1 (PM>10 and PM2.5-10, p < 0.01) and Fel d 1 (PM2.5-10, p < 0.01), but not for Der p 1 (all p > 0.05). PM was reduced in all fractions (p < 0.001). The allergens were found in all particle size fractions, higher mite allergens in the PM>10 and for pet allergens in the PM2.5-10. Conclusions: Air filtration was effective in removing mites, cat and dog allergens and also particulate matter from ambient indoor air, offering a fast and simple solution to mitigate allergen exposome.

3.
Int Arch Allergy Immunol ; 167(3): 158-66, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26302820

RESUMEN

BACKGROUND: Pollen are monitored in Europe by a network of about 400 pollen traps, all operated manually. To date, automated pollen monitoring has only been feasible in areas with limited variability in pollen species. There is a need for rapid reporting of airborne pollen as well as for alleviating the workload of manual operation. We report our experience with a fully automated, image recognition-based pollen monitoring system, BAA500. METHODS: The BAA500 sampled ambient air intermittently with a 3-stage virtual impactor at 60 m3/h in Munich, Germany. Pollen is deposited on a sticky surface that was regularly moved to a microscope equipped with a CCD camera. Images of the pollen were constructed and compared with a library of known samples. A Hirst-type pollen trap was operated simultaneously. RESULTS: Over 480,000 particles sampled with the BAA500 were both manually and automatically identified, of which about 46,000 were pollen. Of the automatically reported pollen, 93.3% were correctly recognized. However, compared with manual identification, 27.8% of the captured pollen were missing in the automatic report, with most reported as unknown pollen. Salix pollen grains were not identified satisfactorily. The daily pollen concentrations reported by a Hirst-type pollen trap and the BAA500 were highly correlated (r = 0.98). CONCLUSIONS: The BAA500 is a functional automated pollen counter. Its software can be upgraded, and so we expected its performance to improve upon training. Automated pollen counting has great potential for workload reduction and rapid online pollen reporting.


Asunto(s)
Contaminantes Atmosféricos/análisis , Alérgenos/análisis , Monitoreo del Ambiente/métodos , Polen/anatomía & histología , Contaminantes Atmosféricos/inmunología , Alérgenos/inmunología , Automatización , Monitoreo del Ambiente/instrumentación , Alemania , Humanos , Polen/inmunología , Reproducibilidad de los Resultados
4.
J Allergy Clin Immunol ; 136(1): 87-95.e6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25956508

RESUMEN

BACKGROUND: Allergies to grass pollen are the number one cause of outdoor hay fever. The human immune system reacts with symptoms to allergen from pollen. OBJECTIVE: We investigated the natural variability in release of the major group 5 allergen from grass pollen across Europe. METHODS: Airborne pollen and allergens were simultaneously collected daily with a volumetric spore trap and a high-volume cascade impactor at 10 sites across Europe for 3 consecutive years. Group 5 allergen levels were determined with a Phl p 5-specific ELISA in 2 fractions of ambient air: particulate matter of greater than 10 µm in diameter and particulate matter greater than 2.5 µm and less than 10 µm in diameter. Mediator release by ambient air was determined in FcεRI-humanized basophils. The origin of pollen was modeled and condensed to pollen potency maps. RESULTS: On average, grass pollen released 2.3 pg of Phl p 5 per pollen. Allergen release per pollen (potency) varied substantially, ranging from less than 1 to 9 pg of Phl p 5 per pollen (5% to 95% percentile). The main variation was locally day to day. Average potency maps across Europe varied between years. Mediator release from basophilic granulocytes correlated better with allergen levels per cubic meter (r(2) = 0.80, P < .001) than with pollen grains per cubic meter (r(2) = 0.61, P < .001). In addition, pollen released different amounts of allergen in the non-pollen-bearing fraction of ambient air, depending on humidity. CONCLUSION: Across Europe, the same amount of pollen released substantially different amounts of group 5 grass pollen allergen. This variation in allergen release is in addition to variations in pollen counts. Molecular aerobiology (ie, determining allergen in ambient air) might be a valuable addition to pollen counting.


Asunto(s)
Aire/análisis , Basófilos/fisiología , Material Particulado/análisis , Proteínas de Plantas/análisis , Polen/química , Receptores de IgE/metabolismo , Rinitis Alérgica Estacional/inmunología , Degranulación de la Célula , Europa (Continente) , Humanos , Humedad , Poaceae/inmunología , Receptores de IgE/genética , Rinitis Alérgica Estacional/epidemiología , Estaciones del Año
5.
Am J Respir Cell Mol Biol ; 47(5): 575-82, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22904196

RESUMEN

High concentrations of particulate matter (PM(10)) were measured in classrooms. This study addresses the hazard of indoor particles in comparison to the better-studied outdoor particles. Samples were taken from six schools during teaching hours. Genome-wide gene expression in human BEAS-2B lung epithelial cells was analyzed and verified by quantitative PCR. Polycyclic aromatic hydrocarbons, endotoxin, and cat allergen (Fel d 1) were analyzed by standard methods. Enhancement of allergic reactivity by PM(10) was confirmed in human primary basophils. Acceleration of human blood coagulation was determined with supernatants of PM(10)-exposed human peripheral blood monocytes. Indoor PM(10) induced serine protease inhibitor B2 (involved in blood coagulation) and inflammatory genes (such as CXCL6, CXCL1, IL6, IL8; all P < 0.001). Outdoor PM(10) induced xenobiotic metabolizing enzymes (cytochrome P450 [CYP] 1A1, CYP1B1, TIPARP; all P < 0.001). The induction of inflammatory genes by indoor PM(10) was explained by endotoxin (indoor 128.5 ± 42.2 EU/mg versus outdoor 13.4 ± 21.5 EU/mg; P < 0.001), the induction of CYP by outdoor polycyclic aromatic hydrocarbons (indoor 8.3 ± 4.9 ng/mg versus outdoor 16.7 ± 15.2 ng/mg; P < 0.01). The induction of serine protease inhibitor B2 was confirmed by a more rapid human blood coagulation (P < 0.05). Indoor PM(10) only affected allergic reactivity from human primary basophils from cat-allergic individuals. This was explained by varying Fel d 1 concentrations in indoor PM(10) (P < 0.001). Indoor PM(10), compared with outdoor PM(10), was six times higher and, on an equal weight basis, induced more inflammatory and allergenic reactions, and accelerated blood coagulation. Outdoor PM(10) had significantly lower effects, but induced detoxifying enzymes. Therefore, preliminary interventions for the reduction of classroom PM(10) seem reasonable, perhaps through intensified ventilation.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Contaminación del Aire Interior , Material Particulado/toxicidad , Instituciones Académicas , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/inmunología , Alérgenos/análisis , Análisis de Varianza , Animales , Basófilos/efectos de los fármacos , Basófilos/inmunología , Basófilos/fisiología , Pruebas de Coagulación Sanguínea , Gatos , Línea Celular , Endotoxinas/análisis , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipersensibilidad , Monocitos/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Material Particulado/análisis , Material Particulado/inmunología , Hidrocarburos Policíclicos Aromáticos/análisis , Transcriptoma
6.
Chem Biol Interact ; 183(1): 57-66, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19766613

RESUMEN

In the present study V79 Chinese hamster cells were genetically engineered for stable expression of the cytochromes P450 1A1, 1A2, 1B1, and 2E1 from man and mouse to investigate species-specific differences in the regioselective metabolism and toxicity of phenanthrene (Phe), the simplest polycyclic aromatic hydrocarbon (PAH) forming a bay-region. Phe is present in various environmental samples and serves as a model substrate for PAH exposure in human biomonitoring studies. For this reason we explored metabolite profiles and metabolite-dependent cytotoxic activities in vitro. The total turnover of CYP-mediated transformation of Phe was as follows: human CYP1B1>CYP1A1>CYP1A2>>CYP2E1, and for mouse CYP1A2>>CYP2E1>CYP1A1. Striking species differences were seen as mouse CYP1B1 did not activate Phe at all, but human CYP1B1 exhibited a significant metabolic turnover comparable to CYP1A1 and CYP1A2. In vivo studies monitoring the whole blood Phe elimination in CYP1A2 knockout and wild-type mice after oral administration confirmed involvement of CYP1A2 in the bioactivation of Phe, but other processes must contribute also. Our data suggest that in humans not only CYP1A2 expressed solely in the liver plays a crucial role in Phe metabolism, but also constitutively expressed extrahepatic CYP1B1 in tissues such as lung, kidney or intestine. This finding will substantially improve the validity of human biomonitoring studies using individual Phe metabolites for the assessment of PAH exposure.


Asunto(s)
Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Fenantrenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Células CHO , Cricetinae , Cricetulus , Citocromo P-450 CYP1A2/deficiencia , Citocromo P-450 CYP1A2/genética , Monitoreo del Ambiente , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenantrenos/sangre , Fenantrenos/metabolismo , Isoformas de Proteínas/metabolismo , Estereoisomerismo , Contaminantes Químicos del Agua/sangre , Contaminantes Químicos del Agua/metabolismo
7.
Environ Toxicol ; 25(2): 188-97, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19382185

RESUMEN

BACKGROUND: Diesel exhaust particles (DEPs) act as adjuvants in the immune system and contribute to the increased prevalence and morbidity of asthma and allergic rhinitis. Polycyclic aromatic hydrocarbons (PAHs) are major components of DEPs, which may be involved in the induction and enhancement of proallergic processes. In this study we explored adjuvant effects of DEP-PAHs on activation parameters of human basophils, fostering allergic inflammation through the release of preformed or granule-derived mediators. METHODS: Heparinized blood samples from birch pollen allergic and control donors were stimulated with Bet v 1, the major allergen of birch pollen grains, alone or together with a mixture of 16 environmental prominent PAHs (EPA-PAH standard). Flow cytometric analysis was performed for quantitative determination of PAH-enhanced basophil activation. To assess direct PAH effects on basophils, enriched cultures from both donor groups were exposed to benzo[a]pyrene (B[a]P) or phenanthrene (Phe), two major DEP-PAHs, with and without allergen. Supernatants were assayed for IL-4 and IL-8 secretion and histamine release by means of ELISA. RESULTS: At environmental relevant exposure levels EPA-PAH standard synergized with antigen and significantly enhanced basophil activation of all birch pollen allergic individuals up to 95%. Single PAHs significantly drove IL-8 secretion from sensitized basophils of all patients tested, and there was no further enhancement by addition of rBet v 1. B[a]P and Phe also significantly induced IL-4 secretion, a key factor for Th2 development, from purified sensitized basophils in the absence of antigen suggesting an adjuvant role of DEP-PAHs in allergic sensitization. None of the basophil samples from healthy controls showed any PAH effect on mediator release. CONCLUSION: DEP-PAHs exert proallergic effects on sensitized basophils in an allergen independent fashion, suggesting a potential role of these pollutants for the allergic breakthrough in atopic individuals, who have not developed an allergic disease yet.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Contaminantes Atmosféricos/farmacología , Antígenos de Plantas/inmunología , Basófilos/inmunología , Hidrocarburos Policíclicos Aromáticos/farmacología , Rinitis Alérgica Estacional/inmunología , Emisiones de Vehículos , Adulto , Antígenos CD/metabolismo , Basófilos/efectos de los fármacos , Benzo(a)pireno/farmacología , Citocinas/metabolismo , Femenino , Histamina/metabolismo , Humanos , Masculino , Material Particulado/farmacología , Fenantrenos/farmacología , Glicoproteínas de Membrana Plaquetaria/metabolismo , Rinitis Alérgica Estacional/genética , Tetraspanina 30 , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...