Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Microorganisms ; 11(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37630492

RESUMEN

Microorganisms inhabiting Antarctic biocrusts develop several strategies to survive extreme environmental conditions such as severe cold and drought. However, the knowledge about adaptations of biocrusts microorganisms are limited. Here, we applied metagenomic sequencing to study biocrusts from east Antarctica. Biocrusts were dominated by cyanobacteria, actinobacteria and proteobacteria. Furthermore, the results provided insights into the presence and abundance of cold shock proteins (Csp), cold shock domain A proteins (CsdA), and antifreeze proteins (AFP) in these extreme environments. The metagenomic analysis revealed a high number of CsdA across the samples. The majority of the Csp recorded in the studied biocrusts were Csp A, C, and E. In addition, CsdA, Csp, and AFP primarily originated from proteobacteria and actinobacteria.

2.
Genes (Basel) ; 14(4)2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37107570

RESUMEN

The diversity of soil bacteria was analyzed via metabarcoding and metagenomic approaches using DNA samples isolated from the biocrusts of 12 different Arctic and Antarctic sites. For the metabarcoding approach, the V3-4 region of the 16S rRNA was targeted. Our results showed that nearly all operational taxonomic units (OTUs = taxa) found in metabarcoding analyses were recovered in metagenomic analyses. In contrast, metagenomics identified a large number of additional OTUs absent in metabarcoding analyses. In addition, we found huge differences in the abundance of OTUs between the two methods. The reasons for these differences seem to be (1) the higher sequencing depth in metagenomics studies, which allows the detection of low-abundance community members in metagenomics, and (2) bias of primer pairs used to amplify the targeted sequence in metabarcoding, which can change the community composition dramatically even at the lower taxonomic levels. We strongly recommend using only metagenomic approaches when establishing the taxonomic profiles of whole biological communities.


Asunto(s)
Metagenómica , Suelo , Metagenómica/métodos , ARN Ribosómico 16S/genética , Bacterias/genética , ADN
3.
Front Microbiol ; 14: 1323148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249463

RESUMEN

The Antarctic terrestrial environment harbors a diverse community of microorganisms, which have adapted to the extreme conditions. The aim of this study was to describe the composition of microbial communities in a diverse range of terrestrial environments (various biocrusts and soils, sands from ephemeral wetlands, biofilms, endolithic and hypolithic communities) in East Antarctica using both molecular and morphological approaches. Amplicon sequencing of the 16S rRNA gene revealed the dominance of Chloroflexi, Cyanobacteria and Firmicutes, while sequencing of the 18S rRNA gene showed the prevalence of Alveolata, Chloroplastida, Metazoa, and Rhizaria. This study also provided a comprehensive assessment of the microphototrophic community revealing a diversity of cyanobacteria and eukaryotic microalgae in various Antarctic terrestrial samples. Filamentous cyanobacteria belonging to the orders Oscillatoriales and Pseudanabaenales dominated prokaryotic community, while members of Trebouxiophyceae were the most abundant representatives of eukaryotes. In addition, the co-occurrence analysis showed a prevalence of positive correlations with bacterial taxa frequently co-occurring together.

4.
Front Microbiol ; 13: 859447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783389

RESUMEN

Biological soil crusts occur worldwide as pioneer communities stabilizing the soil surface. In coastal primary sand dunes, vascular plants cannot sustain due to scarce nutrients and the low-water-holding capacity of the sand sediment. Thus, besides planted dune grass, biocrusts are the only vegetation there. Although biocrusts can reach high coverage rates in coastal sand dunes, studies about their biodiversity are rare. Here, we present a comprehensive overview of the biodiversity of microorganisms in such biocrusts and the neighboring sand from sampling sites along the Baltic Sea coast. The biodiversity of Bacteria, Cyanobacteria, Fungi, and other microbial Eukaryota were assessed using high-throughput sequencing (HTS) with a mixture of universal and group-specific primers. The results showed that the biocrusts recruit their microorganisms mainly from the neighboring sand rather than supporting a universal biocrust microbiome. Although in biocrusts the taxa richness was lower than in sand, five times more co-occurrences were identified using network analysis. This study showed that by comparing neighboring bare surface substrates with biocrusts holds the potential to better understand biocrust development. In addition, the target sequencing approach helps outline potential biotic interactions between different microorganisms groups and identify key players during biocrust development.

5.
Front Microbiol ; 13: 1048522, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590427

RESUMEN

A wide range of microorganisms inhabit biocrusts of arctic and sub-arctic regions. These taxa live and thrive under extreme conditions and, moreover, play important roles in biogeochemical cycling. Nevertheless, their diversity and abundance remain ambiguous. Here, we studied microbial community composition in biocrusts from Svalbard and Iceland using amplicon sequencing and epifluorescence microscopy. Sequencing of 16S rRNA gene revealed the dominance of Chloroflexi in the biocrusts from Iceland and Longyearbyen, and Acidobacteria in the biocrusts from Ny-Ålesund and South Svalbard. Within the 18S rRNA gene sequencing dataset, Chloroplastida prevailed in all the samples with dominance of Trebouxiophyceae in the biocrusts from Ny-Ålesund and Embryophyta in the biocrusts from the other localities. Furthermore, cyanobacterial number of cells and biovolume exceeded the microalgal in the biocrusts. Community compositions in the studied sites were correlated to the measured chemical parameters such as conductivity, pH, soil organic matter and mineral nitrogen contents. In addition, co-occurrence analysis showed the dominance of positive potential interactions and, bacterial and eukaryotic taxa co-occurred more frequently together.

6.
Microorganisms ; 9(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34835321

RESUMEN

Biological soil crusts (biocrusts) are essential communities of organisms in the Icelandic soil ecosystem, as they prevent erosion and cryoturbation and provide nutrients to vascular plants. However, biocrust microbial composition in Iceland remains understudied. To address this gap in knowledge, we applied high-throughput sequencing to study microbial community composition in biocrusts collected along an elevation gradient (11-157 m a.s.l.) stretching away perpendicular to the marine coast. Four groups of organisms were targeted: bacteria and cyanobacteria (16S rRNA gene), fungi (transcribed spacer region), and other eukaryotes (18S rRNA gene). The amplicon sequencing of the 16S rRNA gene revealed the dominance of Proteobacteria, Bacteroidetes, and Actinobacteria. Within the cyanobacteria, filamentous forms from the orders Synechococcales and Oscillatoriales prevailed. Furthermore, fungi in the biocrusts were dominated by Ascomycota, while the majority of reads obtained from sequencing of the 18S rRNA gene belonged to Archaeplastida. In addition, microbial photoautotrophs isolated from the biocrusts were assigned to the cyanobacterial genera Phormidesmis, Microcoleus, Wilmottia, and Oscillatoria and to two microalgal phyla Chlorophyta and Charophyta. In general, the taxonomic diversity of microorganisms in the biocrusts increased following the elevation gradient and community composition differed among the sites, suggesting that microclimatic and soil parameters might shape biocrust microbiota.

7.
Microorganisms ; 9(4)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808463

RESUMEN

Potash tailing piles located in Germany represent extremely hypersaline locations that negatively affect neighbouring environments and limit the development of higher vegetation. However, biocrusts, as cryptogamic covers, inhabit some of these areas and provide essential ecological functions, but, nevertheless, they remain poorly described. Here, we applied high-throughput sequencing (HTS) and targeted four groups of microorganisms: bacteria, cyanobacteria, fungi and other eukaryotes. The sequencing of the 16S rRNA gene revealed the dominance of Proteobacteria, Cyanobacteria and Actinobacteria. Additionally, we applied yanobacteria-specific primers for a detailed assessment of the cyanobacterial community, which was dominated by members of the filamentous orders Synechococcales and Oscillatoriales. Furthermore, the majority of reads in the studied biocrusts obtained by sequencing of the 18S rRNA gene belonged to eukaryotic microalgae. In addition, sequencing of the internal rDNA transcribed spacer region (ITS) showed the dominance of Ascomycota within the fungal community. Overall, these molecular data provided the first detailed overview of microorganisms associated with biocrusts inhabiting highly saline potash tailing piles and showed the dissimilarities in microbial diversity among the samples.

8.
Microb Ecol ; 77(1): 136-147, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29796758

RESUMEN

Cyanobacteria are important colonizers of recently deglaciated proglacial soil but an in-depth investigation of cyanobacterial succession following glacier retreat has not yet been carried out. Here, we report on the successional trajectories of cyanobacterial communities in biological soil crusts (BSCs) along a 100-year deglaciation gradient in three glacier forefields in central Svalbard, High Arctic. Distance from the glacier terminus was used as a proxy for soil age (years since deglaciation), and cyanobacterial abundance and community composition were evaluated by epifluorescence microscopy and pyrosequencing of partial 16S rRNA gene sequences, respectively. Succession was characterized by a decrease in phylotype richness and a marked shift in community structure, resulting in a clear separation between early (10-20 years since deglaciation), mid (30-50 years), and late (80-100 years) communities. Changes in cyanobacterial community structure were mainly connected with soil age and associated shifts in soil chemical composition (mainly moisture, SOC, SMN, K, and Na concentrations). Phylotypes associated with early communities were related either to potentially novel lineages (< 97.5% similar to sequences currently available in GenBank) or lineages predominantly restricted to polar and alpine biotopes, suggesting that the initial colonization of proglacial soil is accomplished by cyanobacteria transported from nearby glacial environments. Late communities, on the other hand, included more widely distributed genotypes, which appear to establish only after the microenvironment has been modified by the pioneering taxa.


Asunto(s)
Cianobacterias/clasificación , Cubierta de Hielo/microbiología , Filogenia , Microbiología del Suelo , Regiones Árticas , Biodiversidad , Cianobacterias/genética , ADN Bacteriano , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Ribosómico 16S/genética , Suelo/química , Svalbard
9.
Syst Appl Microbiol ; 41(4): 363-373, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29452715

RESUMEN

Molecular and morphological methods were applied to study cyanobacterial community composition in biological soil crusts (BSCs) from four areas (two nunataks and two ridges) in the Sør Rondane Mountains, Antarctica. The sampling sites serve as control areas for open top chambers (OTCs) that were put in place in 2010 at the time of sample collection and will be compared with BSC samples taken from the OTCs in the future. Cyanobacterial cell biovolume was estimated using epifluorescence microscopy, which revealed the dominance of filamentous cyanobacteria in all studied sites except the Utsteinen ridge, where unicellular cyanobacteria were the most abundant. Cyanobacterial diversity was studied by a combination of molecular fingerprinting methods based on the 16S rRNA gene (denaturing gradient gel electrophoresis (DGGE) and 454 pyrosequencing) using cyanobacteria-specific primers. The number of DGGE sequences obtained per site was variable and, therefore, a high-throughput method was subsequently employed to improve the diversity coverage. Consistent with previous surveys in Antarctica, both methods showed that filamentous cyanobacteria, such as Leptolyngbya sp., Phormidium sp. and Microcoleus sp., were dominant in the studied sites. In addition, the studied localities differed in substrate type, climatic conditions and soil parameters, which probably resulted in differences in cyanobacterial community composition. Furthermore, the BSC growing on gneiss pebbles had lower cyanobacterial abundances than BSCs associated with granitic substrates.


Asunto(s)
Cianobacterias , Cubierta de Hielo/microbiología , Microbiología del Suelo , Regiones Antárticas , Biodiversidad , Cianobacterias/clasificación , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , ADN Bacteriano/genética , Ecosistema , Tipificación Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
FEMS Microbiol Ecol ; 91(12)2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26564957

RESUMEN

Cyanobacterial diversity in soil crusts has been extensively studied in arid lands of temperate regions, particularly semi-arid steppes and warm deserts. Nevertheless, Arctic soil crusts have received far less attention than their temperate counterparts. Here, we describe the cyanobacterial communities from various types of soil crusts from Svalbard, High Arctic. Four soil crusts at different development stages (ranging from poorly-developed to well-developed soil crusts) were analysed using 454 pyrosequencing of the V3-V4 variable region of the cyanobacterial 16S rRNA gene. Analyses of 95 660 cyanobacterial sequences revealed a dominance of OTUs belonging to the orders Synechococcales, Oscillatoriales and Nostocales. The most dominant OTUs in the four studied sites were related to the filamentous cyanobacteria Leptolyngbya sp. Phylotype richness estimates increased from poorly- to mid-developed soil crusts and decreased in the well-developed lichenized soil crust. Moreover, pH, ammonium and organic carbon concentrations appeared significantly correlated with the cyanobacterial community structure.


Asunto(s)
Cianobacterias/clasificación , Líquenes/genética , Consorcios Microbianos , Microbiología del Suelo , Suelo/química , Regiones Árticas , Secuencia de Bases , Clima Frío , Cianobacterias/genética , ADN Bacteriano/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Svalbard
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA