Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158934

RESUMEN

In the pathogenesis of Alzheimer's disease, the overexpression of glycogen synthase kinase-3ß (GSK-3ß) stands out due to its multifaced nature, as it contributes to the promotion of amyloid ß and tau protein accumulation, as well as neuroinflammatory processes. Therefore, in the present study, we have designed, synthesized, and evaluated a new series of GSK-3ß inhibitors based on the N-(pyridin-2-yl)cyclopropanecarboxamide scaffold. We identified compound 36, demonstrating an IC50 of 70 nM against GSK-3ß. Subsequently, through crystallography studies and quantum mechanical analysis, we elucidated its binding mode and identified the structural features crucial for interactions with the active site of GSK-3ß, thereby understanding its inhibitory potency. Compound 36 was effective in the cellular model of hyperphosphorylated tau-induced neurodegeneration, where it restored cell viability after okadaic acid treatment and showed anti-inflammatory activity in the LPS model, significantly reducing NO, IL-6, and TNF-α release. In ADME-tox in vitro studies, we confirmed the beneficial profile of 36, including high permeability in PAMPA (Pe equals 9.4) and high metabolic stability in HLMs as well as lack of significant interactions with isoforms of the CYP enzymes and lack of considerable cytotoxicity on selected cell lines (IC50 > 100 µM on HT-22 cells and 89.3 µM on BV-2 cells). Based on promising pharmacological activities and favorable ADME-tox properties, compound 36 may be considered a promising candidate for in vivo research as well as constitute a reliable starting point for further studies.

3.
Int J Biol Macromol ; 267(Pt 1): 131392, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582483

RESUMEN

The main protease (Mpro) of SARS-CoV-2 is critical in the virus's replication cycle, facilitating the maturation of polyproteins into functional units. Due to its conservation across taxa, Mpro is a promising target for broad-spectrum antiviral drugs. Targeting Mpro with small molecule inhibitors, such as nirmatrelvir combined with ritonavir (Paxlovid™), which the FDA has approved for post-exposure treatment and prophylaxis, can effectively interrupt the replication process of the virus. A key aspect of Mpro's function is its ability to form a functional dimer. However, the mechanics of dimerization and its influence on proteolytic activity remain less understood. In this study, we utilized biochemical, structural, and molecular modelling approaches to explore Mpro dimerization. We evaluated critical residues, specifically Arg4 and Arg298, that are essential for dimerization. Our results show that changes in the oligomerization state of Mpro directly affect its enzymatic activity and dimerization propensity. We discovered a synergistic relationship influencing dimer formation, involving both intra- and intermolecular interactions. These findings highlight the potential for developing allosteric inhibitors targeting Mpro, offering promising new directions for therapeutic strategies.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Multimerización de Proteína , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Humanos , Antivirales/farmacología , Antivirales/química , Tratamiento Farmacológico de COVID-19 , Modelos Moleculares , COVID-19/virología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA