Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Biomed Sci ; 31(1): 37, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627751

RESUMEN

BACKGROUND: Huntington's disease (HD) is marked by a CAG-repeat expansion in the huntingtin gene that causes neuronal dysfunction and loss, affecting mainly the striatum and the cortex. Alterations in the neurovascular coupling system have been shown to lead to dysregulated energy supply to brain regions in several neurological diseases, including HD, which could potentially trigger the process of neurodegeneration. In particular, it has been observed in cross-sectional human HD studies that vascular alterations are associated to impaired cerebral blood flow (CBF). To assess whether whole-brain changes in CBF are present and follow a pattern of progression, we investigated both resting-state brain perfusion and vascular reactivity longitudinally in the zQ175DN mouse model of HD. METHODS: Using pseudo-continuous arterial spin labelling (pCASL) MRI in the zQ175DN model of HD and age-matched wild-type (WT) mice, we assessed whole-brain, resting-state perfusion at 3, 6 and 9 and 13 months of age, and assessed hypercapnia-induced cerebrovascular reactivity (CVR), at 4.5, 6, 9 and 15 months of age. RESULTS: We found increased perfusion in cortical regions of zQ175DN HET mice at 3 months of age, and a reduction of this anomaly at 6 and 9 months, ages at which behavioural deficits have been reported. On the other hand, under hypercapnia, CBF was reduced in zQ175DN HET mice as compared to the WT: for multiple brain regions at 6 months of age, for only somatosensory and retrosplenial cortices at 9 months of age, and brain-wide by 15 months. CVR impairments in cortical regions, the thalamus and globus pallidus were observed in zQ175DN HET mice at 9 months, with whole brain reactivity diminished at 15 months of age. Interestingly, blood vessel density was increased in the motor cortex at 3 months, while average vessel length was reduced in the lateral portion of the caudate putamen at 6 months of age. CONCLUSION: Our findings reveal early cortical resting-state hyperperfusion and impaired CVR at ages that present motor anomalies in this HD model, suggesting that further characterization of brain perfusion alterations in animal models is warranted as a potential therapeutic target in HD.


Asunto(s)
Enfermedad de Huntington , Humanos , Ratones , Animales , Lactante , Enfermedad de Huntington/genética , Estudios Transversales , Hipercapnia , Encéfalo , Modelos Animales de Enfermedad , Perfusión
2.
Neurobiol Dis ; 193: 106438, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38365045

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disease affecting motor and cognitive abilities. Multiple studies have found white matter anomalies in HD-affected humans and animal models of HD. The identification of sensitive white-matter-based biomarkers in HD animal models will be important in understanding disease mechanisms and testing the efficacy of therapeutic interventions. Here we investigated the progression of white matter deficits in the knock-in zQ175DN heterozygous (HET) mouse model of HD at 3, 6 and 11 months of age (M), reflecting different states of phenotypic progression. We compared findings from traditional diffusion tensor imaging (DTI) and advanced fixel-based analysis (FBA) diffusion metrics for their sensitivity in detecting white matter anomalies in the striatum, motor cortex, and segments of the corpus callosum. FBA metrics revealed progressive and widespread reductions of fiber cross-section and fiber density in myelinated bundles of HET mice. The corpus callosum genu was the most affected structure in HET mice at 6 and 11 M based on the DTI and FBA metrics, while the striatum showed the earliest progressive differences starting at 3 M based on the FBA metrics. Overall, FBA metrics detected earlier and more prominent alterations in myelinated fiber bundles compared to the DTI metrics. Luxol fast blue staining showed no loss in myelin density, indicating that diffusion anomalies could not be explained by myelin reduction but diffusion anomalies in HET mice were accompanied by increased levels of neurofilament light chain protein at 11 M. Altogether, our findings reveal progressive alterations in myelinated fiber bundles that can be measured using diffusion MRI, representing a candidate noninvasive imaging biomarker to study phenotype progression and the efficacy of therapeutic interventions in zQ175DN mice. Moreover, our study exposed higher sensitivity of FBA than DTI metrics, suggesting a potential benefit of adopting these advanced metrics in other contexts, including biomarker development in humans.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Sustancia Blanca , Humanos , Animales , Ratones , Imagen de Difusión Tensora , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/genética , Imagen de Difusión por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen , Modelos Animales de Enfermedad , Biomarcadores
3.
Imaging Neurosci (Camb) ; 1: 1-19, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37719837

RESUMEN

Timelines of events, such as symptom appearance or a change in biomarker value, provide powerful signatures that characterise progressive diseases. Understanding and predicting the timing of events is important for clinical trials targeting individuals early in the disease course when putative treatments are likely to have the strongest effect. However, previous models of disease progression cannot estimate the time between events and provide only an ordering in which they change. Here, we introduce the temporal event-based model (TEBM), a new probabilistic model for inferring timelines of biomarker events from sparse and irregularly sampled datasets. We demonstrate the power of the TEBM in two neurodegenerative conditions: Alzheimer's disease (AD) and Huntington's disease (HD). In both diseases, the TEBM not only recapitulates current understanding of event orderings but also provides unique new ranges of timescales between consecutive events. We reproduce and validate these findings using external datasets in both diseases. We also demonstrate that the TEBM improves over current models; provides unique stratification capabilities; and enriches simulated clinical trials to achieve a power of 80% with less than half the cohort size compared with random selection. The application of the TEBM naturally extends to a wide range of progressive conditions.

4.
Sci Rep ; 13(1): 10194, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353500

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by expanded (≥ 40) glutamine-encoding CAG repeats in the huntingtin gene, which leads to dysfunction and death of predominantly striatal and cortical neurons. While the genetic profile and clinical signs and symptoms of the disease are better known, changes in the functional architecture of the brain, especially before the clinical expression becomes apparent, are not fully and consistently characterized. In this study, we sought to uncover functional changes in the brain in the heterozygous (HET) zQ175 delta-neo (DN) mouse model at 3, 6, and 10 months of age, using resting-state functional magnetic resonance imaging (RS-fMRI). This mouse model shows molecular, cellular and circuitry alterations that worsen through age. Motor function disturbances are manifested in this model at 6 and 10 months of age. Specifically, we investigated, longitudinally, changes in co-activation patterns (CAPs) that are the transient states of brain activity constituting the resting-state networks (RSNs). Most robust changes in the temporal properties of CAPs occurred at the 10-months time point; the durations of two anti-correlated CAPs, characterized by simultaneous co-activation of default-mode like network (DMLN) and co-deactivation of lateral-cortical network (LCN) and vice-versa, were reduced in the zQ175 DN HET animals compared to the wild-type mice. Changes in the spatial properties, measured in terms of activation levels of different brain regions, during CAPs were found at all three ages and became progressively more pronounced at 6-, and 10 months of age. We then assessed the cross-validated predictive power of CAP metrics to distinguish HET animals from controls. Spatial properties of CAPs performed significantly better than the chance level at all three ages with 80% classification accuracy at 6 and 10 months of age.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Encéfalo/metabolismo , Heterocigoto , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Modelos Animales de Enfermedad
5.
Neuroimage Clin ; 38: 103387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37023491

RESUMEN

Despite the effectiveness of surgical interventions for the treatment of intractable focal temporal lobe epilepsy (TLE), the substrates that support good outcomes are poorly understood. While algorithms have been developed for the prediction of either seizure or cognitive/psychiatric outcomes alone, no study has reported on the functional and structural architecture that supports joint outcomes. We measured key aspects of pre-surgical whole brain functional/structural network architecture and evaluated their ability to predict post-operative seizure control in combination with cognitive/psychiatric outcomes. Pre-surgically, we identified the intrinsic connectivity networks (ICNs) unique to each person through independent component analysis (ICA), and computed: (1) the spatial-temporal match between each person's ICA components and established, canonical ICNs, (2) the connectivity strength within each identified person-specific ICN, (3) the gray matter (GM) volume underlying the person-specific ICNs, and (4) the amount of variance not explained by the canonical ICNs for each person. Post-surgical seizure control and reliable change indices of change (for language [naming, phonemic fluency], verbal episodic memory, and depression) served as binary outcome responses in random forest (RF) models. The above functional and structural measures served as input predictors. Our empirically derived ICN-based measures customized to the individual showed that good joint seizure and cognitive/psychiatric outcomes depended upon higher levels of brain reserve (GM volume) in specific networks. In contrast, singular outcomes relied on systematic, idiosyncratic variance in the case of seizure control, and the weakened pre-surgical presence of functional ICNs that encompassed the ictal temporal lobe in the case of cognitive/psychiatric outcomes. Our data made clear that the ICNs differed in their propensity to provide reserve for adaptive outcomes, with some providing structural (brain), and others functional (cognitive) reserve. Our customized methodology demonstrated that when substantial unique, patient-specific ICNs are present prior to surgery there is a reliable association with poor post-surgical seizure control. These ICNs are idiosyncratic in that they did not match the canonical, normative ICNs and, therefore, could not be defined functionally, with their location likely varying by patient. This important finding suggested the level of highly individualized ICN's in the epileptic brain may signal the emergence of epileptogenic activity after surgery.


Asunto(s)
Epilepsia del Lóbulo Temporal , Memoria Episódica , Humanos , Imagen por Resonancia Magnética/métodos , Red Nerviosa , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Encéfalo/fisiología , Convulsiones
6.
Neurobiol Dis ; 181: 106095, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36963694

RESUMEN

Huntington's disease is an autosomal, dominantly inherited neurodegenerative disease caused by an expansion of the CAG repeats in exon 1 of the huntingtin gene. Neuronal degeneration and dysfunction that precedes regional atrophy result in the impairment of striatal and cortical circuits that affect the brain's large-scale network functionality. However, the evolution of these disease-driven, large-scale connectivity alterations is still poorly understood. Here we used resting-state fMRI to investigate functional connectivity changes in a mouse model of Huntington's disease in several relevant brain networks and how they are affected at different ages that follow a disease-like phenotypic progression. Towards this, we used the heterozygous (HET) form of the zQ175DN Huntington's disease mouse model that recapitulates aspects of human disease pathology. Seed- and Region-based analyses were performed at different ages, on 3-, 6-, 10-, and 12-month-old HET and age-matched wild-type mice. Our results demonstrate decreased connectivity starting at 6 months of age, most prominently in regions such as the retrosplenial and cingulate cortices, pertaining to the default mode-like network and auditory and visual cortices, part of the associative cortical network. At 12 months, we observe a shift towards decreased connectivity in regions such as the somatosensory cortices, pertaining to the lateral cortical network, and the caudate putamen, a constituent of the subcortical network. Moreover, we assessed the impact of distinct Huntington's Disease-like pathology of the zQ175DN HET mice on age-dependent connectivity between different brain regions and networks where we demonstrate that connectivity strength follows a non-linear, inverted U-shape pattern, a well-known phenomenon of development and normal aging. Conversely, the neuropathologically driven alteration of connectivity, especially in the default mode and associative cortical networks, showed diminished age-dependent evolution of functional connectivity. These findings reveal that in this Huntington's disease model, altered connectivity starts with cortical network aberrations which precede striatal connectivity changes, that appear only at a later age. Taken together, these results suggest that the age-dependent cortical network dysfunction seen in rodents could represent a relevant pathological process in Huntington's disease progression.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Ratones , Animales , Lactante , Imagen por Resonancia Magnética/métodos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Enfermedades Neurodegenerativas/patología , Encéfalo/patología , Mapeo Encefálico , Modelos Animales de Enfermedad
7.
Mov Disord ; 37(12): 2407-2416, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36173150

RESUMEN

BACKGROUND: Atrophy in the striatum is a hallmark of Huntington's disease (HD), including the period before clinical motor diagnosis (before-CMD), but it extends to other subcortical structures. The study of the covariation of these structures could improve the detection of disease-related longitudinal progression before-CMD, provide mechanistic insights of the disease, and potentially be used to obtain accurate prospective estimates of atrophy before-CMD and early after-CMD. METHODS: We analyzed data from 337 before-CMD individuals, 236 healthy control subjects, and 95 early after-CMD individuals from three studies, and we used nine subcortical regions volumes in two analyses. First, we discriminated before-CMD from healthy control trajectories by integrating volume changes from these regions. Second, we estimated prospective atrophy before-CMD and early after-CMD by considering the influence of a region's present volume over the future volume of another one. RESULTS: Before-CMD progression was robustly detected across studies. Indeed, detection of before-CMD progression improved when multiple structures were integrated, as opposed to analyzing the striatum alone, likely because of the reduced partial correlation between caudate and thalamic volume change before-CMD. Our multivariate atrophy prediction model found a thalamus-caudate association that is consistent with this pattern, which yields an improved caudate atrophy prediction in early after-CMD. CONCLUSIONS: This study is the first attempt to validate before-CMD multivariate subcortical change detection across studies and to do multivariate prospective atrophy prediction in HD. These models achieve improved performance by detecting a dissociation between caudate and thalamic atrophy trajectories, and they provide a possible mechanistic understanding of the dynamics of HD. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/complicaciones , Estudios Prospectivos , Imagen por Resonancia Magnética , Atrofia/patología , Tálamo/diagnóstico por imagen , Tálamo/patología , Progresión de la Enfermedad
8.
J Neurosci ; 42(24): 4913-4926, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35545436

RESUMEN

Aphasia is a prevalent cognitive syndrome caused by stroke. The rarity of premorbid imaging and heterogeneity of lesion obscures the links between the local effects of the lesion, global anatomic network organization, and aphasia symptoms. We applied a simulated attack approach in humans to examine the effects of 39 stroke lesions (16 females) on anatomic network topology by simulating their effects in a control sample of 36 healthy (15 females) brain networks. We focused on measures of global network organization thought to support overall brain function and resilience in the whole brain and within the left hemisphere. After removing lesion volume from the network topology measures and behavioral scores [the Western Aphasia Battery Aphasia Quotient (WAB-AQ), four behavioral factor scores obtained from a neuropsychological battery, and a factor sum], we compared the behavioral variance accounted for by simulated poststroke connectomes to that observed in the randomly permuted data. Global measures of anatomic network topology in the whole brain and left hemisphere accounted for 10% variance or more of the WAB-AQ and the lexical factor score beyond lesion volume and null permutations. Streamline networks provided more reliable point estimates than FA networks. Edge weights and network efficiency were weighted most highly in predicting the WAB-AQ for FA networks. Overall, our results suggest that global network measures provide modest statistical value beyond lesion volume when predicting overall aphasia severity, but less value in predicting specific behaviors. Variability in estimates could be induced by premorbid ability, deafferentation and diaschisis, and neuroplasticity following stroke.SIGNIFICANCE STATEMENT Poststroke, the remaining neuroanatomy maintains cognition and supports recovery. However, studies often use small, cross-sectional samples that cannot fully model the interactions between lesions and other variables that affect networks in stroke. Alternate methods are required to account for these effects. "Simulated attack" models are computational approaches that apply virtual damage to the brain and measure their putative consequences. Using a simulated attack model, we estimated how simulated damage to anatomic networks could account for language performance. Overall, our results reveal that global network measures can provide modest statistical value predicting overall aphasia severity, but less value in predicting specific behaviors. These findings suggest that more theoretically precise network models could be necessary to robustly predict individual outcomes in aphasia.


Asunto(s)
Afasia , Conectoma , Accidente Cerebrovascular , Afasia/diagnóstico por imagen , Afasia/etiología , Encéfalo/patología , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética , Accidente Cerebrovascular/patología
9.
Front Neurol ; 12: 712565, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744964

RESUMEN

Volumetric magnetic resonance imaging (vMRI) has been widely studied in Huntington's disease (HD) and is commonly used to assess treatment effects on brain atrophy in interventional trials. Global and regional trajectories of brain atrophy in HD, with early involvement of striatal regions, are becoming increasingly understood. However, there remains heterogeneity in the methods used and a lack of widely-accessible multisite, longitudinal, normative datasets in HD. Consensus for standardized practices for data acquisition, analysis, sharing, and reporting will strengthen the interpretation of vMRI results and facilitate their adoption as part of a pathobiological disease staging system. The Huntington's Disease Regulatory Science Consortium (HD-RSC) currently comprises 37 member organizations and is dedicated to building a regulatory science strategy to expedite the approval of HD therapeutics. Here, we propose four recommendations to address vMRI standardization in HD research: (1) a checklist of standardized practices for the use of vMRI in clinical research and for reporting results; (2) targeted research projects to evaluate advanced vMRI methodologies in HD; (3) the definition of standard MRI-based anatomical boundaries for key brain structures in HD, plus the creation of a standard reference dataset to benchmark vMRI data analysis methods; and (4) broad access to raw images and derived data from both observational studies and interventional trials, coded to protect participant identity. In concert, these recommendations will enable a better understanding of disease progression and increase confidence in the use of vMRI for drug development.

10.
Front Neurol ; 12: 712555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621236

RESUMEN

Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder that is caused by expansion of a CAG-repeat tract in the huntingtin gene and characterized by motor impairment, cognitive decline, and neuropsychiatric disturbances. Neuropathological studies show that disease progression follows a characteristic pattern of brain atrophy, beginning in the basal ganglia structures. The HD Regulatory Science Consortium (HD-RSC) brings together diverse stakeholders in the HD community-biopharmaceutical industry, academia, nonprofit, and patient advocacy organizations-to define and address regulatory needs to accelerate HD therapeutic development. Here, the Biomarker Working Group of the HD-RSC summarizes the cross-sectional evidence indicating that regional brain volumes, as measured by volumetric magnetic resonance imaging, are reduced in HD and are correlated with disease characteristics. We also evaluate the relationship between imaging measures and clinical change, their longitudinal change characteristics, and within-individual longitudinal associations of imaging with disease progression. This analysis will be valuable in assessing pharmacodynamics in clinical trials and supporting clinical outcome assessments to evaluate treatment effects on neurodegeneration.

11.
Mov Disord ; 36(10): 2282-2292, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34014005

RESUMEN

BACKGROUND: Potential therapeutic targets and clinical trials for Huntington's disease have grown immensely in the last decade. However, to improve clinical trial outcomes, there is a need to better characterize profiles of signs and symptoms across different epochs of the disease to improve selection of participants. OBJECTIVE: The objective of the present study was to best distinguish longitudinal trajectories across different Huntington's disease progression groups. METHODS: Clinical and morphometric imaging data from 1082 participants across IMAGE-HD, TRACK-HD, and PREDICT-HD studies were combined, with longitudinal times ranging between 1 and 10 years. Participants were classified into 4 groups using CAG and age product. Using multivariate linear mixed modeling, 63 combinations of markers were tested for their sensitivity in differentiating CAG and age product groups. Next, multivariate linear mixed modeling was applied to define the best combination of markers to track progression across individual CAG and age product groups. RESULTS: Putamen and caudate volumes, individually and/or combined, were identified as the best variables to both differentiate CAG and age product groups and track progression within them. The model using only caudate volume best described advanced disease progression in the combined data set. Contrary to expectations, combining clinical markers and volumetric measures did not improve tracking longitudinal progression. CONCLUSIONS: Monitoring volumetric changes throughout a trial (alongside primary and secondary clinical end points) may provide a more comprehensive understanding of improvements in functional outcomes and help to improve the design of clinical trials. Alternatively, our results suggest that imaging deserves consideration as an end point in clinical trials because of the prospect of greater sensitivity. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Huntington , Biomarcadores , Cognición , Progresión de la Enfermedad , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Estudios Longitudinales , Imagen por Resonancia Magnética
12.
Sci Rep ; 10(1): 1252, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31988371

RESUMEN

Patient stratification is critical for the sensitivity of clinical trials at early stages of neurodegenerative disorders. In Huntington's disease (HD), genetic tests make cognitive, motor and brain imaging measurements possible before symptom manifestation (pre-HD). We evaluated pre-HD stratification models based on single visit resting-state functional MRI (rs-fMRI) data that assess observed longitudinal motor and cognitive change rates from the multisite Track-On HD cohort (74 pre-HD, 79 control participants). We computed longitudinal performance change on 10 tasks (including visits from the preceding TRACK-HD study when available), as well as functional connectivity density (FCD) maps in single rs-fMRI visits, which showed high test-retest reliability. We assigned pre-HD subjects to subgroups of fast, intermediate, and slow change along single tasks or combinations of them, correcting for expectations based on aging; and trained FCD-based classifiers to distinguish fast- from slow-progressing individuals. For robustness, models were validated across imaging sites. Stratification models distinguished fast- from slow-changing participants and provided continuous assessments of decline applicable to the whole pre-HD population, relying on previously-neglected white matter functional signals. These results suggest novel correlates of early deterioration and a robust stratification strategy where a single MRI measurement provides an estimate of multiple ongoing longitudinal changes.


Asunto(s)
Disfunción Cognitiva/diagnóstico por imagen , Enfermedad de Huntington/clasificación , Enfermedad de Huntington/fisiopatología , Adulto , Encéfalo/patología , Mapeo Encefálico/métodos , Estudios de Casos y Controles , Trastornos del Conocimiento/fisiopatología , Disfunción Cognitiva/fisiopatología , Estudios de Cohortes , Progresión de la Enfermedad , Diagnóstico Precoz , Femenino , Humanos , Enfermedad de Huntington/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Examen Neurológico/métodos , Descanso
13.
Neuroimage Clin ; 19: 443-453, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29984153

RESUMEN

In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical diagnosis based on fixed impairment levels, as opposed to predicting impairment in time windows comparable to the duration of a clinical trial. Here we evaluate an approach to both detect atrophy patterns associated with early degeneration and provide a prognosis of motor impairment within 3 years, using data from the TRACK-HD study on 80 premanifest HD (pre-HD) individuals and 85 age- and sex-matched healthy controls. We integrate anatomical MRI information from gray matter concentrations (estimated via voxel-based morphometry) together with baseline data from demographic, genetic and motor domains to distinguish individuals at high risk of developing pronounced future motor impairment from those at low risk. We evaluate the ability of models to distinguish between these two groups solely using baseline imaging data, as well as in combination with longitudinal imaging or non-imaging data. Our models show improved performance for motor prognosis through the incorporation of imaging features to non-imaging data, reaching 88% cross-validated accuracy when using baseline non-longitudinal information, and detect informative correlates in the caudate nucleus and the thalamus both for motor prognosis and early atrophy detection. These results show the plausibility of using baseline imaging and basic demographic/genetic measures for early detection of individuals at high risk of severe future motor impairment in relatively short timeframes.


Asunto(s)
Encéfalo/patología , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/patología , Adulto , Anciano , Atrofia/diagnóstico , Mapeo Encefálico/métodos , Progresión de la Enfermedad , Diagnóstico Precoz , Femenino , Humanos , Enfermedad de Huntington/genética , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Pruebas Neuropsicológicas
14.
Neuropsychologia ; 115: 112-123, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28847712

RESUMEN

Voxel-based lesion-symptom mapping (VLSM) is an important method for basic and translational human neuroscience research. VLSM leverages modern neuroimaging analysis techniques to build on the classic approach of examining the relationship between location of brain damage and cognitive deficits. Testing an association between deficit severity and lesion status in each voxel involves very many individual tests and requires statistical correction for multiple comparisons. Several strategies have been adapted from analysis of functional neuroimaging data, though VLSM faces a more difficult trade-off between avoiding false positives and statistical power (missing true effects). We used simulated and real deficit scores from a sample of approximately 100 individuals with left hemisphere stroke to evaluate two such permutation-based approaches. Using permutation to set a minimum cluster size identified a region that systematically extended well beyond the true region, making it ill-suited to identifying brain-behavior relationships. In contrast, generalizing the standard permutation-based family-wise error correction approach provided a principled way to balance false positives and false negatives. Comparison with the widely-used parametric false discovery rate (FDR) correction showed that FDR produces anti-conservative results at smaller sample sizes (N = 30-60). An implementation of the continuous permutation-based FWER correction method described here is included in the lesymap package for lesion-symptom mapping (https://dorianps.github.io/LESYMAP/).


Asunto(s)
Afasia/patología , Mapeo Encefálico , Encéfalo/patología , Correlación de Datos , Afasia/diagnóstico por imagen , Afasia/etiología , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Tamaño de la Muestra , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen
15.
Neuropsychologia ; 115: 154-166, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28882479

RESUMEN

Lesion to symptom mapping (LSM) is a crucial tool for understanding the causality of brain-behavior relationships. The analyses are typically performed by applying statistical methods on individual brain voxels (VLSM), a method called the mass-univariate approach. Several authors have shown that VLSM suffers from limitations that may decrease the accuracy and reliability of the findings, and have proposed the use of multivariate methods to overcome these limitations. In this study, we propose a multivariate optimization technique known as sparse canonical correlation analysis for neuroimaging (SCCAN) for lesion to symptom mapping. To validate the method and compare it with mass-univariate results, we used data from 131 patients with chronic stroke lesions in the territory of the middle cerebral artery, and created synthetic behavioral scores based on the lesion load of 93 brain regions (putative functional units). LSM analyses were performed with univariate VLSM or SCCAN, and the accuracy of the two methods was compared in terms of both overlap and displacement from the simulated functional areas. Overall, SCCAN produced more accurate results - higher dice overlap and smaller average displacement - compared to VLSM. This advantage persisted at different sample sizes (N = 20-131) and different multiple comparison corrections (false discovery rate, FDR; Bonferroni; permutation-based family wise error rate, FWER). These findings were replicated with a fully automated SCCAN routine that relied on cross-validated predictive accuracy to find the optimal sparseness value. Simulations of one, two, and three brain regions showed a systematic advantage of SCCAN over VLSM; under no circumstance could VLSM exceed the accuracy obtained with SCCAN. When considering functional units composed of multiple brain areas VLSM identified fewer areas than SCCAN. The investigation of real scores of aphasia severity (aphasia quotient and picture naming) showed that SCCAN could accurately identify known language-critical areas, while VLSM either produced diffuse maps (FDR correction) or few scattered voxels (FWER correction). Overall, this study shows that a multivariate method, such as, SCCAN, outperforms VLSM in a number of scenarios, including functional dependency on single or multiple areas, different sample sizes, different multi-area combinations, and different thresholding mechanisms (FWER, Bonferroni, FDR). These results support previous claims that multivariate methods are in general more accurate than mass-univariate approaches, and should be preferred over traditional VLSM approaches. All the methods described in this study are available in the newly developed LESYMAP package for R.


Asunto(s)
Mapeo Encefálico , Encéfalo/patología , Correlación de Datos , Análisis Multivariante , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Anciano , Encéfalo/diagnóstico por imagen , Simulación por Computador , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Neuroimagen , Accidente Cerebrovascular/diagnóstico por imagen
16.
Hum Brain Mapp ; 38(11): 5603-5615, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28782862

RESUMEN

The severity of post-stroke aphasia and the potential for recovery are highly variable and difficult to predict. Evidence suggests that optimal estimation of aphasia severity requires the integration of multiple neuroimaging modalities and the adoption of new methods that can detect multivariate brain-behavior relationships. We created and tested a multimodal framework that relies on three information sources (lesion maps, structural connectivity, and functional connectivity) to create an array of unimodal predictions which are then fed into a final model that creates "stacked multimodal predictions" (STAMP). Crossvalidated predictions of four aphasia scores (picture naming, sentence repetition, sentence comprehension, and overall aphasia severity) were obtained from 53 left hemispheric chronic stroke patients (age: 57.1 ± 12.3 yrs, post-stroke interval: 20 months, 25 female). Results showed accurate predictions for all four aphasia scores (correlation true vs. predicted: r = 0.79-0.88). The accuracy was slightly smaller but yet significant (r = 0.66) in a full split crossvalidation with each patient considered as new. Critically, multimodal predictions produced more accurate results that any single modality alone. Topological maps of the brain regions involved in the prediction were recovered and compared with traditional voxel-based lesion-to-symptom maps, revealing high spatial congruency. These results suggest that neuroimaging modalities carry complementary information potentially useful for the prediction of aphasia scores. More broadly, this study shows that the translation of neuroimaging findings into clinically useful tools calls for a shift in perspective from unimodal to multimodal neuroimaging, from univariate to multivariate methods, from linear to nonlinear models, and, conceptually, from inferential to predictive brain mapping. Hum Brain Mapp 38:5603-5615, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Afasia/diagnóstico por imagen , Afasia/etiología , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Accidente Cerebrovascular/complicaciones , Afasia/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Circulación Cerebrovascular/fisiología , Enfermedad Crónica , Femenino , Humanos , Pruebas del Lenguaje , Modelos Lineales , Masculino , Persona de Mediana Edad , Análisis Multivariante , Dinámicas no Lineales , Oxígeno/sangre , Descanso , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/fisiopatología
17.
Neurology ; 88(24): 2285-2293, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28515267

RESUMEN

OBJECTIVE: To characterize the presurgical brain functional architecture presented in patients with temporal lobe epilepsy (TLE) using graph theoretical measures of resting-state fMRI data and to test its association with surgical outcome. METHODS: Fifty-six unilateral patients with TLE, who subsequently underwent anterior temporal lobectomy and were classified as obtaining a seizure-free (Engel class I, n = 35) vs not seizure-free (Engel classes II-IV, n = 21) outcome at 1 year after surgery, and 28 matched healthy controls were enrolled. On the basis of their presurgical resting-state functional connectivity, network properties, including nodal hubness (importance of a node to the network; degree, betweenness, and eigenvector centralities) and integration (global efficiency), were estimated and compared across our experimental groups. Cross-validations with support vector machine (SVM) were used to examine whether selective nodal hubness exceeded standard clinical characteristics in outcome prediction. RESULTS: Compared to the seizure-free patients and healthy controls, the not seizure-free patients displayed a specific increase in nodal hubness (degree and eigenvector centralities) involving both the ipsilateral and contralateral thalami, contributed by an increase in the number of connections to regions distributed mostly in the contralateral hemisphere. Simulating removal of thalamus reduced network integration more dramatically in not seizure-free patients. Lastly, SVM models built on these thalamic hubness measures produced 76% prediction accuracy, while models built with standard clinical variables yielded only 58% accuracy (both were cross-validated). CONCLUSIONS: A thalamic network associated with seizure recurrence may already be established presurgically. Thalamic hubness can serve as a potential biomarker of surgical outcome, outperforming the clinical characteristics commonly used in epilepsy surgery centers.


Asunto(s)
Mapeo Encefálico , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Imagen por Resonancia Magnética , Tálamo/diagnóstico por imagen , Tálamo/fisiopatología , Adulto , Lobectomía Temporal Anterior , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Humanos , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Cuidados Preoperatorios , Pronóstico , Descanso , Máquina de Vectores de Soporte , Resultado del Tratamiento
18.
Hum Brain Mapp ; 37(4): 1405-21, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26756101

RESUMEN

The gold standard for identifying stroke lesions is manual tracing, a method that is known to be observer dependent and time consuming, thus impractical for big data studies. We propose LINDA (Lesion Identification with Neighborhood Data Analysis), an automated segmentation algorithm capable of learning the relationship between existing manual segmentations and a single T1-weighted MRI. A dataset of 60 left hemispheric chronic stroke patients is used to build the method and test it with k-fold and leave-one-out procedures. With respect to manual tracings, predicted lesion maps showed a mean dice overlap of 0.696 ± 0.16, Hausdorff distance of 17.9 ± 9.8 mm, and average displacement of 2.54 ± 1.38 mm. The manual and predicted lesion volumes correlated at r = 0.961. An additional dataset of 45 patients was utilized to test LINDA with independent data, achieving high accuracy rates and confirming its cross-institutional applicability. To investigate the cost of moving from manual tracings to automated segmentation, we performed comparative lesion-to-symptom mapping (LSM) on five behavioral scores. Predicted and manual lesions produced similar neuro-cognitive maps, albeit with some discussed discrepancies. Of note, region-wise LSM was more robust to the prediction error than voxel-wise LSM. Our results show that, while several limitations exist, our current results compete with or exceed the state-of-the-art, producing consistent predictions, very low failure rates, and transferable knowledge between labs. This work also establishes a new viewpoint on evaluating automated methods not only with segmentation accuracy but also with brain-behavior relationships. LINDA is made available online with trained models from over 100 patients.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Estadística como Asunto/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/metabolismo
19.
Neuroimage Clin ; 9: 20-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26288753

RESUMEN

Pre-surgical evaluation of patients with temporal lobe epilepsy (TLE) relies on information obtained from multiple neuroimaging modalities. The relationship between modalities and their combined power in predicting the seizure focus is currently unknown. We investigated asymmetries from three different modalities, PET (glucose metabolism), MRI (cortical thickness), and diffusion tensor imaging (DTI; white matter anisotropy) in 28 left and 30 right TLE patients (LTLE and RTLE). Stepwise logistic regression models were built from each modality separately and from all three combined, while bootstrapped methods and split-sample validation verified the robustness of predictions. Among all multimodal asymmetries, three PET asymmetries formed the best predictive model (100% success in full sample, >95% success in split-sample validation). The combinations of PET with other modalities did not perform better than PET alone. Probabilistic classifications were obtained for new clinical cases, which showed correct lateralization for 7/7 new TLE patients (100%) and for 4/5 operated patients with discordant or non-informative PET reports (80%). Metabolism showed closer relationship with white matter in LTLE and closer relationship with gray matter in RTLE. Our data suggest that metabolism is a powerful modality that can predict seizure laterality with high accuracy, and offers high value for automated predictive models. The side of epileptogenic focus can affect the relationship of metabolism with brain structure. The data and tools necessary to obtain classifications for new TLE patients are made publicly available.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiopatología , Imagen de Difusión Tensora/métodos , Epilepsia del Lóbulo Temporal/diagnóstico , Lateralidad Funcional/fisiología , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Adulto , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal , Análisis de Regresión
20.
Hum Brain Mapp ; 36(1): 85-98, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25137314

RESUMEN

Microstructural white matter tract correlations have been shown to reflect known patterns of phylogenetic development and functional specialization in healthy subjects. The aim of this study was to establish intertract correlations in a group of controls and to examine potential deviations from normality in temporal lobe epilepsy (TLE). We investigated intertract correlations in 28 healthy controls, 21 left TLE (LTLE) and 23 right TLE (RTLE). Nine tracts were investigated, comprising the parahippocampal fasciculi, the uncinate fasciculi, the arcuate fasciculi, the frontoparietal tracts, and the fornix. An abnormal increase in tract correlations was observed in LTLE, while RTLE showed intertract correlations similar to controls. In the control group, tract correlations increased with increasing fractional anisotropy (FA), while in the TLE groups tract correlations increased with decreasing FA. Cluster analyses revealed agglomeration of bilateral pairs of homologous tracts in healthy subjects, with such pairs separated in our LTLE and RTLE groups. Discriminant analyses aimed at distinguishing LTLE from RTLE, revealing that tract correlations produce higher rates of accurate group classification than FA values. Our results confirm and extend previous work by showing that LTLE compared to RTLE patients display not only more extensive losses in microstructural orientation but also more aberrant intertract correlations. Aberrant correlations may be related to pathologic processes (i.e., seizure spread) or to adaptive processes aimed at preserving key cognitive functions. Our data suggest that tract correlations may have predictive value in distinguishing LTLE from RTLE, potentially moving diffusion imaging to a place of greater prominence in clinical practice.


Asunto(s)
Mapeo Encefálico , Encéfalo/patología , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Lateralidad Funcional/fisiología , Sustancia Blanca/patología , Adulto , Anisotropía , Encéfalo/irrigación sanguínea , Análisis por Conglomerados , Imagen de Difusión Tensora , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estadística como Asunto , Sustancia Blanca/irrigación sanguínea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...