Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 201(9): 2654-2663, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30266771

RESUMEN

Systemic juvenile idiopathic arthritis (sJIA) is a childhood-onset immune disorder of unknown cause. One of the concepts is that the disease results from an inappropriate control of immune responses to an initially harmless trigger. In the current study, we investigated whether sJIA may be caused by defects in IL-10, a key cytokine in controlling inflammation. We used a translational approach, with an sJIA-like mouse model and sJIA patient samples. The sJIA mouse model relies on injection of CFA in IFN-γ-deficient BALB/c mice; corresponding wild type (WT) mice only develop a subtle and transient inflammatory reaction. Diseased IFN-γ-deficient mice showed a defective IL-10 production in CD4+ regulatory T cells, CD19+ B cells, and CD3-CD122+CD49b+ NK cells, with B cells as the major source of IL-10. In addition, neutralization of IL-10 in WT mice resulted in a chronic immune inflammatory disorder clinically and hematologically reminiscent of sJIA. In sJIA patients, IL-10 plasma levels were strikingly low as compared with proinflammatory mediators. Furthermore, CD19+ B cells from sJIA patients showed a decreased IL-10 production, both ex vivo and after in vitro stimulation. In conclusion, IL-10 neutralization in CFA-challenged WT mice converts a transient inflammatory reaction into a chronic disease and represents an alternative model for sJIA in IFN-γ-competent mice. Cell-specific IL-10 defects were observed in sJIA mice and patients, together with an insufficient IL-10 production to counterbalance their proinflammatory cytokines. Our data indicate that a defective IL-10 production contributes to the pathogenesis of sJIA.


Asunto(s)
Artritis Juvenil/inmunología , Interleucina-10/biosíntesis , Animales , Artritis Juvenil/sangre , Humanos , Interleucina-10/sangre , Interleucina-10/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
2.
J Allergy Clin Immunol ; 142(2): 630-646, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29391254

RESUMEN

BACKGROUND: Roifman syndrome is a rare inherited disorder characterized by spondyloepiphyseal dysplasia, growth retardation, cognitive delay, hypogammaglobulinemia, and, in some patients, thrombocytopenia. Compound heterozygous variants in the small nuclear RNA gene RNU4ATAC, which is necessary for U12-type intron splicing, were identified recently as driving Roifman syndrome. OBJECTIVE: We studied 3 patients from 2 unrelated kindreds harboring compound heterozygous or homozygous stem II variants in RNU4ATAC to gain insight into the mechanisms behind this disorder. METHODS: We systematically profiled the immunologic and hematologic compartments of the 3 patients with Roifman syndrome and performed RNA sequencing to unravel important splicing defects in both cell lineages. RESULTS: The patients exhibited a dramatic reduction in B-cell numbers, with differentiation halted at the transitional B-cell stage. Despite abundant B-cell activating factor availability, development past this B-cell activating factor-dependent stage was crippled, with disturbed minor splicing of the critical mitogen-activated protein kinase 1 signaling component. In the hematologic compartment patients with Roifman syndrome demonstrated defects in megakaryocyte differentiation, with inadequate generation of proplatelets. Platelets from patients with Roifman syndrome were rounder, with increased tubulin and actin levels, and contained increased α-granule and dense granule markers. Significant minor intron retention in 354 megakaryocyte genes was observed, including DIAPH1 and HPS1, genes known to regulate platelet and dense granule formation, respectively. CONCLUSION: Together, our results provide novel molecular and cellular data toward understanding the immunologic and hematologic features of Roifman syndrome.


Asunto(s)
Linfocitos B/fisiología , Plaquetas/fisiología , Cardiomiopatías/genética , Síndromes de Inmunodeficiencia/genética , Megacariocitos/fisiología , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Osteocondrodisplasias/genética , Células Precursoras de Linfocitos B/fisiología , ARN Nuclear Pequeño/genética , Enfermedades de la Retina/genética , Adolescente , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Humanos , Lactante , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Linaje , Enfermedades de Inmunodeficiencia Primaria , Empalme de Proteína/genética , Transducción de Señal/genética , Secuenciación del Exoma
3.
Arthritis Rheumatol ; 69(1): 213-224, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27696741

RESUMEN

OBJECTIVE: Systemic juvenile idiopathic arthritis (JIA) is an immunoinflammatory disease characterized by arthritis and systemic manifestations. The role of natural killer (NK) cells in the pathogenesis of systemic JIA remains unclear. The purpose of this study was to perform a comprehensive analysis of NK cell phenotype and functionality in patients with systemic JIA. METHODS: Transcriptional alterations specific to NK cells were investigated by RNA sequencing of highly purified NK cells from 6 patients with active systemic JIA and 6 age-matched healthy controls. Cytokines (NK cell-stimulating and others) were quantified in plasma samples (n = 18). NK cell phenotype and cytotoxic activity against tumor cells were determined (n = 10), together with their interferon-γ (IFNγ)-producing function (n = 8). RESULTS: NK cells from the systemic JIA patients showed an altered gene expression profile compared to cells from the healthy controls, with enrichment of immunoinflammatory pathways, increased expression of innate genes including TLR4 and S100A9, and decreased expression of immune-regulating genes such as IL10RA and GZMK. In the patients' plasma, interleukin-18 (IL-18) levels were increased, and a decreased ratio of IFNγ to IL-18 was observed. NK cells from the patients exhibited specific alterations in the balance of inhibitory and activating receptors, with decreased killer cell lectin-like receptor G1 and increased NKp44 expression. Although NK cells from the patients showed increased granzyme B expression, consistent with intact cytotoxicity and degranulation against a tumor cell line, decreased granzyme K expression in CD56bright NK cells and defective IL-18-induced IFNγ production and signaling were demonstrated. CONCLUSION: NK cells are active players in the inflammatory environment typical of systemic JIA. Although their cytotoxic function is globally intact, subtle defects in NK-related pathways, such as granzyme K expression and IL-18-driven IFNγ production, may contribute to the immunoinflammatory dysregulation in this disease.


Asunto(s)
Artritis Juvenil/inmunología , Granzimas , Interferón gamma , Células Asesinas Naturales/fisiología , Artritis Juvenil/genética , Células Cultivadas , Expresión Génica , Granzimas/genética , Humanos , Interferón gamma/genética , Fenotipo
4.
J Immunol ; 196(7): 3124-34, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26903481

RESUMEN

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening immunological disorder that is characterized by systemic inflammation, widespread organ damage, and hypercytokinemia. Primary HLH is caused by mutations in granule-mediated cytotoxicity, whereas secondary HLH occurs, without a known genetic background, in a context of infections, malignancies, or autoimmune and autoinflammatory disorders. Clinical manifestations of both HLH subtypes are often precipitated by a viral infection, predominantly with Herpesviridae. Exploiting this knowledge, we established an animal model of virus-associated secondary HLH by infecting immunocompetent wild-type mice with the ß-herpesvirus murine CMV. C57BL/6 mice developed a mild inflammatory phenotype, whereas BALB/c mice displayed the clinicopathologic features of HLH, as set forth in the Histiocyte Society diagnostic guidelines: fever, cytopenia, hemophagocytosis, hyperferritinemia, and elevated serum levels of soluble CD25. BALB/c mice also developed lymphadenopathy, liver dysfunction, and decreased NK cell numbers. Lymphoid and myeloid cells were in a hyperactivated state. Nonetheless, depletion of CD8(+) T cells could not inhibit or cure the HLH-like syndrome, highlighting a first dissimilarity from mouse models of primary HLH. Immune cell hyperactivation in BALB/c mice was accompanied by a cytokine storm. Notably, plasma levels of IFN-γ, a key pathogenic cytokine in models of primary HLH, were the highest. Nevertheless, murine CMV-infected IFN-γ-deficient mice still developed the aforementioned HLH-like symptoms. In fact, IFN-γ-deficient mice displayed a more complete spectrum of HLH, including splenomegaly, coagulopathy, and decreased NK cell cytotoxicity, indicating a regulatory role for IFN-γ in the pathogenesis of virus-associated secondary HLH as opposed to its central pathogenic role in primary HLH.


Asunto(s)
Infecciones por Herpesviridae/complicaciones , Linfohistiocitosis Hemofagocítica/etiología , Muromegalovirus/fisiología , Animales , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Infecciones por Herpesviridae/virología , Histiocitos/inmunología , Histiocitos/metabolismo , Interferón gamma/deficiencia , Interferón gamma/genética , Interferón gamma/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Hígado/virología , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
5.
PLoS One ; 11(2): e0150075, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26914138

RESUMEN

OBJECTIVES: Indoleamine 2,3-dioxygenase-1 (IDO1) is an immune-modulatory enzyme that catalyzes the degradation of tryptophan (Trp) to kynurenine (Kyn) and is strongly induced by interferon (IFN)-γ. We previously reported highly increased levels of IFN-γ and corresponding IDO activity in patients with hemophagocytic lymphohistiocytosis (HLH), a hyper-inflammatory syndrome. On the other hand, IFN-γ and IDO were low in patients with systemic juvenile idiopathic arthritis (sJIA), an autoinflammatory syndrome. As HLH can occur as a complication of sJIA, the opposing levels of both IFN-γ and IDO are remarkable. In animal models for sJIA and HLH, the role of IFN-γ differs from being protective to pathogenic. In this study, we aimed to unravel the role of IDO1 in the pathogenesis of sJIA and HLH. METHODS: Wild-type and IDO1-knockout (IDO1-KO) mice were used in 3 models of sJIA or HLH: complete Freund's adjuvant (CFA)-injected mice developed an sJIA-like syndrome and secondary HLH (sHLH) was evoked by either repeated injection of unmethylated CpG oligonucleotide or by primary infection with mouse cytomegalovirus (MCMV). An anti-CD3-induced cytokine release syndrome was used as a non-sJIA/HLH control model. RESULTS: No differences were found in clinical, laboratory and hematological features of sJIA/HLH between wild-type and IDO1-KO mice. As IDO modulates the immune response via induction of regulatory T cells and inhibition of T cell proliferation, we investigated both features in a T cell-triggered cytokine release syndrome. Again, no differences were observed in serum cytokine levels, percentages of regulatory T cells, nor of proliferating or apoptotic thymocytes and lymph node cells. CONCLUSIONS: Our data demonstrate that IDO1 deficiency does not affect inflammation in sJIA, sHLH and a T cell-triggered cytokine release model. We hypothesize that other tryptophan-catabolizing enzymes like IDO2 and tryptophan 2,3-dioxygenase (TDO) might compensate for the lack of IDO1.


Asunto(s)
Artritis Experimental/genética , Artritis Juvenil/patología , Citocinas/sangre , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Linfohistiocitosis Hemofagocítica/patología , Linfocitos T/inmunología , Animales , Apoptosis/inmunología , Artritis Experimental/inmunología , Artritis Juvenil/genética , Proliferación Celular , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/patología , Adyuvante de Freund/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Inflamación/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Interferón gamma/metabolismo , Linfohistiocitosis Hemofagocítica/genética , Síndrome de Activación Macrofágica/genética , Síndrome de Activación Macrofágica/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Triptófano Oxigenasa/metabolismo
6.
Rheumatology (Oxford) ; 54(8): 1507-17, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25767156

RESUMEN

OBJECTIVES: To study the role of IFN-γ in the pathogenesis of systemic JIA (sJIA) and haemophagocytic lymphohistiocytosis (HLH) by searching for an IFN-γ profile, and to assess its relationship with other cytokines. METHODS: Patients with inactive (n = 10) and active sJIA (n = 10), HLH [n = 5; of which 3 had sJIA-associated macrophage activation syndrome (MAS)] and healthy controls (n = 16) were enrolled in the study. Cytokines and IFN-γ-induced genes and proteins were determined in plasma, in patient peripheral blood mononuclear cells (PBMCs) and in lymph node biopsies of one patient during both sJIA and MAS episodes. IFN-γ responses were investigated in healthy donor PBMCs, primary fibroblasts and endothelial cells. RESULTS: Plasma IFN-γ, IL-6 and IL-18 were elevated in active sJIA and HLH. Levels of IFN-γ and IFN-γ-induced proteins (IP-10/CXCL-10, IL-18BP and indoleamine 2,3-dioxygenase) in HLH were much higher than levels in active sJIA. Free IL-18 and ratios of IL-18/IFN-γ were higher in active sJIA compared with HLH. HLH PBMCs showed hyporesponsiveness to IFN-γ in vitro when compared with control and sJIA PBMCs. Endothelial cells and fibroblasts expressed IFN-γ-induced proteins in situ in lymph node staining of a MAS patient and in vitro upon stimulation with IFN-γ. CONCLUSION: Patients with active sJIA and HLH/MAS show distinct cytokine profiles, with highly elevated plasma levels of IFN-γ and IFN-γ-induced proteins typically found in HLH/MAS. In addition to PBMCs, histiocytes, endothelial cells and fibroblasts may contribute to an IFN-γ profile in plasma. Increasing levels of IFN-γ compared with IL-18 may raise suspicion about the development of MAS in sJIA.


Asunto(s)
Artritis Juvenil/metabolismo , Citocinas/metabolismo , Interferón gamma/metabolismo , Interleucina-18/metabolismo , Linfohistiocitosis Hemofagocítica/metabolismo , Síndrome de Activación Macrofágica/metabolismo , Adolescente , Artritis Juvenil/diagnóstico , Artritis Juvenil/patología , Biopsia , Estudios de Casos y Controles , Niño , Preescolar , Diagnóstico Diferencial , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lactante , Interleucina-6/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/patología , Síndrome de Activación Macrofágica/diagnóstico , Síndrome de Activación Macrofágica/patología , Masculino , Adulto Joven
7.
Eur J Immunol ; 45(5): 1535-47, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25627671

RESUMEN

The thymus is the organ devoted to T-cell production. The thymus undergoes multiple rounds of atrophy and redevelopment before degenerating with age in a process known as involution. This process is poorly understood, despite the influence the phenomenon has on peripheral T-cell numbers. Here we have investigated the FVB/N mouse strain, which displays premature thymic involution. We find multiple architectural and cellular features that precede thymic involution, including disruption of the epithelial-endothelial relationship and a progressive loss of pro-T cells. The architectural features, reminiscent of the human thymus, are intrinsic to the nonhematopoietic compartment and are neither necessary nor sufficient for thymic involution. By contrast, the loss of pro-T cells is intrinsic to the hematopoietic compartment, and is sufficient to drive premature involution. These results identify pro-T-cell loss as the main driver of premature thymic involution, and highlight the plasticity of the thymic stroma, capable of maintaining function across diverse interstrain architectures.


Asunto(s)
Timo/inmunología , Timo/patología , Envejecimiento/inmunología , Envejecimiento/patología , Animales , Atrofia/inmunología , Atrofia/patología , Diferenciación Celular/inmunología , Endotelio Vascular/patología , Células Epiteliales/patología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Especificidad de la Especie , Células del Estroma/patología , Linfocitos T/inmunología , Linfocitos T/patología , Timo/irrigación sanguínea
8.
Cytokine Growth Factor Rev ; 26(1): 35-45, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24948570

RESUMEN

Systemic juvenile idiopathic arthritis (sJIA) is a severe inflammatory childhood disorder, characterized by a specific pattern of systemic features and a typical cytokine profile. Patients are at risk to develop macrophage activation syndrome (MAS), an acute life-threatening condition defined by excessive proliferation and activation of macrophages and T cells. Defects of unknown cause in the natural killer (NK) cell cytotoxic capacity are presumed to underlie the pathogenesis of MAS and have been detected in sJIA patients. Here, we provide an overview of the cytokine profiles in sJIA and related mouse models. We discuss the influence of cytokines on NK cell function, and hypothesize that NK cell dysfunction in sJIA is caused by altered cytokine profiles.


Asunto(s)
Artritis Juvenil/inmunología , Artritis Juvenil/fisiopatología , Citocinas/metabolismo , Células Asesinas Naturales/inmunología , Animales , Artritis Juvenil/complicaciones , Humanos , Síndrome de Activación Macrofágica/etiología , Síndrome de Activación Macrofágica/fisiopatología , Ratones , Linfocitos T/inmunología
9.
Arthritis Rheumatol ; 66(5): 1340-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24470407

RESUMEN

OBJECTIVE: Systemic juvenile idiopathic arthritis (JIA) is unique among the rheumatic diseases of childhood, given its distinctive systemic inflammatory character. Inappropriate control of innate immune responses following an initially harmless trigger is thought to account for the excessive inflammatory reaction. The aim of this study was to generate a similar systemic inflammatory syndrome in mice by injecting a relatively innocuous, yet persistent, immune system trigger: Freund's complete adjuvant (CFA), containing heat-killed mycobacteria. METHODS: Given the central role of interferon-γ (IFNγ) in immune regulation, we challenged wild-type (WT) and IFNγ-knockout (KO) BALB/c mice with CFA, and analyzed their clinical symptoms and biologic characteristics. The production of cytokines and the effects of anticytokine antibodies were investigated. RESULTS: In WT mice, CFA injection resulted in splenomegaly, lymphadenopathy, neutrophilia, thrombocytosis, and increased cytokine expression. In the absence of IFNγ, these symptoms were more pronounced and were accompanied by weight loss, arthritis, anemia, hemophagocytosis, abundance of immature blood cells, and increased levels of interleukin-6 (IL-6), all of which are reminiscent of the symptoms of systemic JIA. CFA-challenged IFNγ-KO mice showed increased expression of IL-17 by CD4+ T cells and by innate γ/δ T cells. Inflammatory and hematologic changes were prevented by treatment with anti-IL-12/IL-23p40 and anti-IL-17 antibodies. CONCLUSION: Immune stimulation of IFNγ-KO mice with CFA produces a systemic inflammatory syndrome reflecting the clinical, biologic, and histopathologic picture of systemic JIA. The protective function of IFNγ in preventing anemia and overall systemic inflammation is a striking observation. The finding that both adaptive and innate T cells are important sources of IL-17 may be of relevance in the pathogenesis of systemic JIA.


Asunto(s)
Artritis Juvenil/inducido químicamente , Artritis Juvenil/fisiopatología , Modelos Animales de Enfermedad , Adyuvante de Freund/efectos adversos , Sistema Inmunológico/fisiopatología , Interferón gamma/deficiencia , Interferón gamma/fisiología , Inmunidad Adaptativa/fisiología , Anemia/metabolismo , Anemia/fisiopatología , Animales , Artritis Juvenil/metabolismo , Citocinas/metabolismo , Femenino , Adyuvante de Freund/farmacología , Sistema Inmunológico/efectos de los fármacos , Inmunidad Innata/fisiología , Inflamación/metabolismo , Inflamación/fisiopatología , Interferón gamma/genética , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...