Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Bone ; 182: 117065, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428556

RESUMEN

INTRODUCTION: Human mesenchymal stem cells (hMSCs) sense and respond to biomechanical and biophysical stimuli, yet the involved signaling pathways are not fully identified. The clinical application of biophysical stimulation including pulsed electromagnetic field (PEMF) has gained momentum in musculoskeletal disorders and bone tissue engineering. METHODOLOGY: We herein aim to explore the role of PEMF stimulation in bone regeneration by developing trabecular bone-like tissues, and then, culturing them under bone-like mechanical stimulation in an automated perfusion bioreactor combined with a custom-made PEMF stimulator. After selecting the optimal cell seeding and culture conditions for inspecting the effects of PEMF on hMSCs, transcriptomic studies were performed on cells cultured under direct perfusion with and without PEMF stimulation. RESULTS: We were able to identify a set of signaling pathways and upstream regulators associated with PEMF stimulation and to distinguish those linked to bone regeneration. Our findings suggest that PEMF induces the immune potential of hMSCs by activating and inhibiting various immune-related pathways, such as macrophage classical activation and MSP-RON signaling in macrophages, respectively, while promoting angiogenesis and osteogenesis, which mimics the dynamic interplay of biological processes during bone healing. CONCLUSIONS: Overall, the adopted bioreactor-based investigation platform can be used to investigate the impact of PEMF stimulation on bone regeneration.


Asunto(s)
Campos Electromagnéticos , Transcriptoma , Humanos , Huesos , Regeneración Ósea , Reactores Biológicos
2.
Sci Rep ; 14(1): 6397, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493233

RESUMEN

Modular hip implants allow intra-operative adjustments for patient-specific customization and targeted replacement of damaged elements without full implant extraction. However, challenges arise from relative micromotions between components, potentially leading to implant failure due to cytotoxic metal debris. In this study magnitude and directions of micromotions at the taper junction were estimated, aiming to understand the effect of variations in head size and neck length. Starting from a reference configuration adhering to the 12/14 taper standard, six additional implant configurations were generated by varying the head size and/or neck length. A musculoskeletal multibody model of a prothesized lower limb was developed to estimate hip contact force and location during a normal walking task. Following the implant assembly, the multibody-derived loads were imposed as boundary conditions in a finite element analysis to compute the taper junction micromotions as the relative slip between the contacting surfaces. Results highlighted the L-size head as the most critical configuration, indicating a 2.81 µm relative slip at the mid-stance phase. The proposed approach enables the investigation of geometric variations in implants under accurate load conditions, providing valuable insights for designing less risky prostheses and informing clinical decision-making processes.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Humanos , Diseño de Prótesis , Fenómenos Mecánicos , Metales , Corrosión
3.
Front Bioeng Biotechnol ; 11: 1114711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937770

RESUMEN

Introduction: Spinal stability plays a crucial role in the success of the surgical treatment of lumbar vertebral metastasis and, in current practice, less invasive approaches such as short constructs have been considered. Concurrently, carbon fiber-reinforced (CFR) poly-ether-ether-ketone (PEEK) fixation devices are expanding in oncologic spinal surgery thanks to their radiotransparency and valid mechanical properties. This study attempts to provide an exhaustive biomechanical comparison of different CFR-PEEK surgical stabilizations through a highly reproducible experimental setup. Methods: A Sawbones biomimetic phantom (T12-S1) was tested in flexion, extension, lateral bending, and axial rotation. An hemisome lesion on L3 vertebral body was mimicked and different pedicle screw posterior fixations were realized with implants from CarboFix Orthopedics Ltd: a long construct involving two spinal levels above and below the lesion, and a short construct involving only the levels adjacent to L3, with and without the addition of a transverse rod-rod cross-link; to provide additional insights on its long-term applicability, the event of a pedicle screw loosening was also accounted. Results: Short construct reduced the overloading onset caused by long stabilization. Particularly, the segmental motion contribution less deviated from the physiologic pattern and also the long-chain stiffness was reduced with respect to the prevalent long construct. The use of the cross-link enhanced the short stabilization by making it significantly stiffer in lateral bending and axial rotation, and by limiting mobiliza-tion in case of pedicle screw loosening. Discussion: The present study proved in vitro the biomechanical benefits of cross-link augmentation in short CFR-PEEK fixation, demonstrating it to be a potential alternative to standard long fixation in the surgical management of lumbar metastasis.

4.
Nanomaterials (Basel) ; 12(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364654

RESUMEN

In recent years, tissue engineering studies have proposed several approaches to regenerate periodontium based on the use of three-dimensional (3D) tissue scaffolds alone or in association with periodontal ligament stem cells (PDLSCs). The rapid evolution of bioprinting has sped up classic regenerative medicine, making the fabrication of multilayered scaffolds-which are essential in targeting the periodontal ligament (PDL)-conceivable. Physiological mechanical loading is fundamental to generate this complex anatomical structure ex vivo. Indeed, loading induces the correct orientation of the fibers forming the PDL and maintains tissue homeostasis, whereas overloading or a failure to adapt to mechanical load can be at least in part responsible for a wrong tissue regeneration using PDLSCs. This review provides a brief overview of the most recent achievements in periodontal tissue engineering, with a particular focus on the use of PDLSCs, which are the best choice for regenerating PDL as well as alveolar bone and cementum. Different scaffolds associated with various manufacturing methods and data derived from the application of different mechanical loading protocols have been analyzed, demonstrating that periodontal tissue engineering represents a proof of concept with high potential for innovative therapies in the near future.

5.
Sci Rep ; 12(1): 13859, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974079

RESUMEN

In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a ~ 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a ~ 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic pro-osteogenic effect of combined physical stimulations.


Asunto(s)
Campos Electromagnéticos , Ingeniería de Tejidos , Reactores Biológicos , Huesos , Diferenciación Celular/genética , Células Cultivadas , Osteogénesis/genética , Perfusión , Impresión Tridimensional , Reproducibilidad de los Resultados , Ingeniería de Tejidos/métodos , Andamios del Tejido
6.
Ann Biomed Eng ; 50(10): 1243-1254, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35904702

RESUMEN

The study of the spine range of motion under given external load has been the object of many studies in literature, finalised to a better understanding of the spine biomechanics, its physiology, eventual pathologic conditions and possible rehabilitation strategies. However, the huge amount of experimental work performed so far cannot be straightforwardly analysed due to significant differences among loading set-ups. This work performs a meta-analysis of various boundary conditions in literature, focusing on the flexion/extension behaviour of the lumbar spine. The comparison among range of motions is performed virtually through a validated multibody model. Results clearly illustrated the effect of various boundary conditions which can be met in literature, so justifying differences of biomechanical behaviours reported by authors implementing different set-up: for example, a higher value of the follower load can indeed result in a stiffer behaviour; the application of force producing spurious moments results in an apparently more deformable behaviour, however the respective effects change at various segments along the spine due to its natural curvature. These outcomes are reported not only in qualitative, but also in quantitative terms. The numerical approach here followed to perform the meta-analysis is original and it proved to be effective thanks to the bypass of the natural variability among specimens which might completely or partially hinder the effect of some boundary conditions. In addition, it can provide very complete information since the behaviour of each functional spinal unit can be recorded. On the whole, the work provided an extensive review of lumbar spine loading in flexion/extension.


Asunto(s)
Vértebras Lumbares , Región Lumbosacra , Fenómenos Biomecánicos/fisiología , Vértebras Lumbares/fisiología , Movimiento (Física) , Rango del Movimiento Articular/fisiología
7.
iScience ; 25(5): 104297, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35586070

RESUMEN

Functional three-dimensional (3D) engineered cardiac tissue (ECT) models are essential for effective drug screening and biological studies. Application of physiological cues mimicking those typical of the native myocardium is known to promote the cardiac maturation and functionality in vitro. Commercially available bioreactors can apply one physical force type at a time and often in a restricted loading range. To overcome these limitations, a millimetric-scale microscope-integrated bioreactor was developed to deliver multiple biophysical stimuli to ECTs. In this study, we showed that the single application of auxotonic loading (passive) generated a bizonal ECT with a unique cardiac maturation pattern. Throughout the statically cultured constructs and in the ECT region exposed to high passive loading, cardiomyocytes predominantly displayed a round morphology and poor contractility ability. The ECT region with a low passive mechanical stimulation instead showed both rat- and human-origin cardiac cell maturation and organization, as well as increased ECT functionality.

8.
Animals (Basel) ; 12(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35327134

RESUMEN

A catastrophic fracture of the radial carpal bone experienced by a racehorse during a Palio race was analyzed. Computational modelling of the carpal joint at the point of failure informed by live data was generated using a multibody code for dynamics simulation. The circuit design in a turn, the speed of the animal and the surface characteristics were considered in the model. A macroscopic examination of the cartilage, micro-CT and histology were performed on the radio-carpal joint of the limb that sustained the fracture. The model predicted the points of contact forces generated at the level of the radio-carpal joint where the fracture occurred. Articular surfaces of the distal radius, together with the proximal articular surface of small carpal bones, exhibited diffuse wear lines, erosions of the articular cartilage and subchondral bone exposure. Even though the data in this study originated from a single fracture and further work will be required to validate this approach, this study highlights the potential correlation between elevated impact forces generated at the level of contact surfaces of the carpal joint during a turn and cartilage breakdown in the absence of pre-existing pathology. Computer modelling resulted in a useful tool to inversely calculate internal forces generated during specific conditions that cannot be reproduced in-vivo because of ethical concerns.

9.
PLoS One ; 17(3): e0265575, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35316295

RESUMEN

BACKGROUND AND OBJECTIVES: Professional pianists tend to develop playing-related musculoskeletal disorders mostly in the forearm. These injuries are often due to overuse, suggesting the existence of a common forearm region where muscles are often excited during piano playing across subjects. Here we use a grid of electrodes to test this hypothesis, assessing where EMGs with greatest amplitude are more likely to be detected when expert pianists perform different excerpts. METHODS: Tasks were separated into two groups: classical excerpts and octaves, performed by eight, healthy, professional pianists. Monopolar electromyograms (EMGs) were sampled with a grid of 96 electrodes, covering the forearm region where hand and wrist muscles reside. Regions providing consistently high EMG amplitude across subjects were assessed with a non-parametric permutation test, designed for the statistical analysis of neuroimaging experiments. Spatial consistency across trials was assessed with the Binomial test. RESULTS: Spatial consistency of muscle excitation was found across subjects but not across tasks, confining at most 20% of the electrodes in the grid. These local groups of electrodes providing high EMG amplitude were found at the ventral forearm region during classical excerpts and at the dorsal region during octaves, when performed both at preferred and at high, playing speeds. DISCUSSION: Our results revealed that professional pianists consistently load a specific forearm region, depending on whether performing octaves or classical excerpts. This spatial consistency may help furthering our understanding on the incidence of playing-related muscular disorders and provide an anatomical reference for the study of active muscle loading in piano players using surface EMG.


Asunto(s)
Antebrazo , Músculo Esquelético , Electromiografía/métodos , Antebrazo/fisiología , Mano , Humanos , Músculo Esquelético/fisiología , Muñeca
10.
Sci Rep ; 12(1): 3052, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197496

RESUMEN

Nowadays, several configurations of total knee arthroplasty (TKA) implants are commercially available whose designs resulted from clinical and biomechanical considerations. Previous research activities led to the development of the so-called medial-pivot (MP) design. However, the actual benefits of the MP, with respect to other prosthesis designs, are still not well understood. The present work compares the impact of two insert geometries, namely the ultra-congruent (UC) and medial-pivot (MP), on the biomechanical behaviour of a bicondylar total knee endoprosthesis. For this purpose, a multibody model of a lower limb was created alternatively integrating the two implants having the insert geometry discretized. Joint dynamics and contact pressure distributions were evaluated by simulating a squat motion. Results showed a similar tibial internal rotation range of about 3.5°, but an early rotation occurs for the MP design. Furthermore, the discretization of the insert geometry allowed to efficiently derive the contact pressure distributions, directly within the multibody simulation framework, reporting peak pressure values of 33 MPa and 20 MPa for the UC and MP, respectively. Clinically, the presented findings confirm the possibility, through a MP design, to achieve a more natural joint kinematics, consequently improving the post-operative patient satisfaction and potentially reducing the occurrence of phenomena leading to the insert loosening.


Asunto(s)
Artroplastia de Reemplazo de Rodilla/instrumentación , Fenómenos Biomecánicos , Simulación por Computador , Cinética , Prótesis de la Rodilla , Ligamentos , Modelos Biológicos , Músculos , Diseño de Prótesis , Rango del Movimiento Articular , Programas Informáticos , Tibia
11.
Front Bioeng Biotechnol ; 10: 1031183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686253

RESUMEN

The application of biomimetic physical stimuli replicating the in vivo dynamic microenvironment is crucial for the in vitro development of functional cardiac tissues. In particular, pulsed electrical stimulation (ES) has been shown to improve the functional properties of in vitro cultured cardiomyocytes. However, commercially available electrical stimulators are expensive and cumbersome devices while customized solutions often allow limited parameter tunability, constraining the investigation of different ES protocols. The goal of this study was to develop a versatile compact electrical stimulator (ELETTRA) for biomimetic cardiac tissue engineering approaches, designed for delivering controlled parallelizable ES at a competitive cost. ELETTRA is based on an open-source micro-controller running custom software and is combinable with different cell/tissue culture set-ups, allowing simultaneously testing different ES patterns on multiple samples. In particular, customized culture chambers were appositely designed and manufactured for investigating the influence of monophasic and biphasic pulsed ES on cardiac cell monolayers. Finite element analysis was performed for characterizing the spatial distributions of the electrical field and the current density within the culture chamber. Performance tests confirmed the accuracy, compliance, and reliability of the ES parameters delivered by ELETTRA. Biological tests were performed on neonatal rat cardiac cells, electrically stimulated for 4 days, by comparing, for the first time, the monophasic waveform (electric field = 5 V/cm) to biphasic waveforms by matching either the absolute value of the electric field variation (biphasic ES at ±2.5 V/cm) or the total delivered charge (biphasic ES at ±5 V/cm). Findings suggested that monophasic ES at 5 V/cm and, particularly, charge-balanced biphasic ES at ±5 V/cm were effective in enhancing electrical functionality of stimulated cardiac cells and in promoting synchronous contraction.

12.
Med Eng Phys ; 85: 7-15, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33081966

RESUMEN

Decellularized extracellular matrix is one of the most promising biological scaffold supporting in vitro tissue growth and in vivo tissue regeneration in both preclinical research and clinical practice. In case of thick tissues or even organs, conventional static decellularization methods based on chemical or enzymatic treatments are not effective in removing the native cellular material without affecting the extracellular matrix. To overcome this limitation, dynamic decellularization methods, mostly based on perfusion and agitation, have been proposed. In this study, we developed a low-cost scalable 3D-printed sample-holder for agitation-based decellularization purposes, designed for treating multiple specimens simultaneously and for improving efficiency, homogeneity and reproducibility of the decellularization treatment with respect to conventional agitation-based approaches. In detail, the proposed sample-holder is able to house up to four specimens and, immersed in the decellularizing solution within a beaker placed on a magnetic stirrer, to expose them to convective flow, enhancing the solution transport through the specimens while protecting them. Computational fluid dynamics analyses were performed to investigate the fluid phenomena establishing within the beaker and to support the sample-holder design. Exploratory biological tests performed on human skin specimens demonstrated that the sample-holder reduces process duration and increases treatment homogeneity and reproducibility.


Asunto(s)
Matriz Extracelular , Ingeniería de Tejidos , Humanos , Perfusión , Impresión Tridimensional , Reproducibilidad de los Resultados , Andamios del Tejido
14.
Med Eng Phys ; 84: 1-9, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32977905

RESUMEN

Physical stimuli are crucial for the structural and functional maturation of tissues both in vivo and in vitro. In tissue engineering applications, bioreactors have become fundamental and effective tools for providing biomimetic culture conditions that recapitulate the native physical stimuli. In addition, bioreactors play a key role in assuring strict control, automation, and standardization in the production process of cell-based products for future clinical application. In this study, a compact, easy-to-use, tunable stretch bioreactor is proposed. Based on customizable and low-cost technological solutions, the bioreactor was designed for providing tunable mechanical stretch for biomimetic dynamic culture of different engineered tissues. In-house validation tests demonstrated the accuracy and repeatability of the imposed mechanical stimulation. Proof of concepts biological tests performed on engineered cardiac constructs, based on decellularized human skin scaffolds seeded with human cardiac progenitor cells, confirmed the bioreactor Good Laboratory Practice compliance and ease of use, and the effectiveness of the delivered cyclic stretch stimulation on the cardiac construct maturation.


Asunto(s)
Reactores Biológicos , Ingeniería de Tejidos , Humanos , Andamios del Tejido
15.
MethodsX ; 7: 100988, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742943

RESUMEN

The design of loading systems to test biologic samples is often challenging, due to shape variability and non-conventional loading set-ups. In addition to this, large economic investments would not be justified since the loading set up is usually designed for one single or for a limited range of applications. The object of this work is the development of a loading set-up finalised to on-site testing of sutures whose main function is applying a localised tensile load. The main challenges of this design process can be so summarized:•Applying cyclic tensile loads on the suture wire, mimicking the physiologic condition where both suture anchorage points have a certain compliance;•Designing a loading system as versatile as possible, in order to be able to accommodate organs with different geometries and sizes;•Keeping low both the complexity and costs of realization.All these considerations and the design calculi are here reported in detail, discussing the novelty of the system, and its main advantages.

16.
Artículo en Inglés | MEDLINE | ID: mdl-32582675

RESUMEN

Intramedullary nails constitute a viable alternative to extramedullary fixation devices; their use is growing in recent years, especially with reference to self-locking nails. Different designs are available, and it is not trivial to foresee the respective in vivo performances and to provide clinical indications in relation to the type of bone and fracture. In this work a numerical methodology was set up and validated in order to compare the mechanical behavior of two new nailing device concepts with one already used in clinic. In detail, three different nails were studied: (1) the Marchetti-Vicenzi's nail (MV1), (2) a revised concept of this device (MV2), and (3) a new Terzini-Putame's nail (TP) concept. Firstly, the mechanical behavior of the MV1 device was assessed through experimental loading tests employing a 3D-printed component aimed at reproducing the bone geometry inside which the device is implanted. In the next step, the respective numerical model was created, based on a multibody approach including flexible parts, and this model was validated against the previously obtained experimental results. Finally, numerical models of the MV2 and TP concepts were implemented and compared with the MV1 nail, focusing the attention on the response of all devices to compression, tension, bending, and torsion. A stability index (SI) was defined to quantify the mechanical stability provided to the nail-bone assembly by the elastic self-locking mechanism for the various loading conditions. In addition, results in terms of nail-bone assembly stiffness, computed from force/moment vs. displacement/rotation curves, were presented and discussed. Findings revealed that numerical models were able to provide good estimates of load vs. displacement curves. The TP nail concept proved to be able to generate a significantly higher SI (27 N for MV1 vs. 380 N for TP) and a greater stiffening action (up to a stiffness difference for bending load that ranges from 370 Nmm/° for MV1 to 1,532 Nmm/° for TP) than the other two devices which showed similar performances. On the whole, a demonstration was given of information which can be obtained from numerical simulations of expandable fixation devices.

17.
J Mech Behav Biomed Mater ; 109: 103803, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32543391

RESUMEN

A number of surgical practices are aimed to compensate for tissue relaxation or weakened/atrophied muscles by means of suture prostheses/thread lifts. The success rate of these procedures is often very good in the short term, while it is quite variable among subjects and techniques in the middle-long term. Middle-long term failures are mostly related to suture distraction, loosening or wear, coming from repeated loading cycles. In this work, an experimental device to perform ex vivo tests on prosthetic sutures has been set up. An equine laryngoplasty has been used as a benchmark, being representative of sutures aimed to compensate for atrophied muscles. The peculiarity of this experimental set up is that the suture is on-site and it has been tightened with known, repeated loads, which do not depend on thread deformation at different load levels. Preliminary tests have been performed applying over 3000 load cycles and finally a tensile test up to rupture. Force/displacement curves obtained with this experimental set up have been reported and parameters useful to classify the biomechanical performance of sutures versus time (mainly its creep behaviour), have been outlined. Results have outlined that the organ-suture system undergoes significant creep over 3000 cycles, and this should be taken into account in order to foresee its long-term behaviour; in addition, the suture anchorage to cartilage should be improved. The experimental set up can be used to perform on-site testing of sutures, taking into account the compliance and creep response at both suture anchorage ends, in order to compare different surgeries and different kinds of thread.


Asunto(s)
Técnicas de Sutura , Suturas , Animales , Fenómenos Biomecánicos , Caballos , Rotura , Resistencia a la Tracción
18.
Data Brief ; 30: 105644, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32435679

RESUMEN

A number of applications in the surgical practice are based on tensile sutures aimed to keep soft tissues in place and compensate the exit of neuropathies, prolapses or general tissue relaxation. Long-term behaviour of these constructs need to be carefully examined in order to define tensile forces to be applied and to compare different suture anchors. Data here reported refer to equine laryngoplasties, where a suitable loading system has been designed in order to be able to test sutures in-sito, applying known forces ("On-site testing of sutured organs: an experimental set up to cyclically tighten sutures" (Pascoletti et al., 2020 [1])). The loading protocol was made of two steps: in the first step, 3000 loading cycles have been performed; in the following step, a tensile test up to rupture was performed. Cyclic load/displacement curves allow evaluating suture distraction, as a consequence of suture migration and/or soft tissues creep. Tensile curves allow evaluating the residual thread strength and its ultimate displacement. These data can provide a detailed insight of long-term suture behaviour and can be a reference to compare different threads and/or suture anchors.

19.
Artículo en Inglés | MEDLINE | ID: mdl-31448269

RESUMEN

Anterior cruciate ligament (ACL) deficiency can result in serious degenerative stifle injuries. Although tibial plateau leveling osteotomy (TPLO) is a common method for the surgical treatment of ACL deficiency, alternative osteotomies, such as a leveling osteotomy based on the center of rotation of angulation (CBLO) are described in the literature. However, whether a CBLO could represent a viable alternative to a TPLO remains to be established. The aim of this study is to compare TPLO and CBLO effectiveness in treating ACL rupture. First, a computational multibody model of a physiological stifle was created using three-dimensional surfaces of a medium-sized canine femur, tibia, fibula and patella. Articular contacts were modeled by means of a formulation describing the contact force as function of the interpenetration between surfaces. Moreover, ligaments were represented by vector forces connecting origin and insertion points. The lengths of the ligaments at rest were optimized simulating the drawer test. The ACL-deficient model was obtained by deactivating the ACL related forces in the optimized physiological one. Then, TPLO and CBLO treatments were virtually performed on the pathological stifle. Finally, the drawer test and a weight-bearing squat movement were performed to compare the treatments effectiveness in terms of tibial anteroposterior translation, patellar ligament force, intra-articular compressive force and quadriceps force. Results from drawer test simulations showed that ACL-deficiency causes an increase of the anterior tibial translation by up to 5.2 mm, while no remarkable differences between CBLO and TPLO were recorded. Overall, squat simulations have demonstrated that both treatments lead to an increase of all considered forces compared to the physiological model. Specifically, CBLO and TPLO produce an increase in compressive forces of 54% and 37%, respectively, at 90° flexion. However, TPLO produces higher compressive forces (up to 16%) with respect to CBLO for wider flexion angles ranging from 135° to 117°. Conversely, TPLO generates lower forces in patellar ligament and quadriceps muscle, compared to CBLO. In light of the higher intra-articular compressive force over the physiological walking range of flexion, which was observed to result from TPLO in the current study, the use of this technique should be carefully considered.

20.
J Healthc Eng ; 2019: 3957931, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178986

RESUMEN

Three-dimensional (3D) printing represents a key technology for rapid prototyping, allowing easy, rapid, and low-cost fabrication. In this work, 3D printing was applied for the in-house production of customized components of a mechanical stretching bioreactor with potential application for cardiac tissue engineering and mechanobiology studies. The culture chamber housing and the motor housing were developed as functional permanent parts, aimed at fixing the culture chamber position and at guaranteeing motor watertightness, respectively. Innovative sample holder prototypes were specifically designed and 3D-printed for holding thin and soft biological samples during cyclic stretch culture. The manufactured components were tested in-house and in a cell biology laboratory. Moreover, tensile tests and finite element analysis were performed to investigate the gripping performance of the sample holder prototypes. All the components showed suitable performances in terms of design, ease of use, and functionality. Based on 3D printing, the bioreactor optimization was completely performed in-house, from design to fabrication, enabling customization freedom, strict design-to-prototype timing, and cost and time effective testing, finally boosting the bioreactor development process.


Asunto(s)
Reactores Biológicos , Impresión Tridimensional/instrumentación , Ingeniería de Tejidos/instrumentación , Biofisica/instrumentación , Diseño de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...