Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37874771

RESUMEN

Compared to the enormous number of nanostructures that have been documented, the variety of nanostructures produced by organic polymerization is rather limited. We devised an unconventional route and a sustainable approach to distribute tellurium nanoparticles (Te NPs) in a poly(3,4-ethylene dioxythiophene) (PEDOT) matrix to form semiconducting organic-inorganic nanocomposites for potential applications in electrochemical sensing. The adopted strategy of in situ liquid/liquid interface-assisted polymerization aids in the formation of intimately tethered Te NPs on the PEDOT polymer chains, thereby preventing the aggregation of Te NPs. The untapped versatility inherent to using biphasic systems for interfacial polymerization is explored at three interface systems of immiscible solvents: chloroform/water, dichloromethane/water, and hexane/water, giving rise to PEDOT/Te nanocomposite (PTeNC) of distinct morphology. Chemical nature, crystallinity, and morphology investigations proved the successful formation of PTeNC in different interface systems. Consequently, the temporal evolution of interfacial tension in the preferential adsorption of nanoparticles and final product morphology was monitored by pendant drop tensiometry. Owing to the role of morphology, PTeNC synthesized at the hexane/water interface showcased the best electrocatalytic behavior toward nonenzymatic detection of l-ascorbic acid, an essential nutritional factor, and a neuromodulator with a limit of detection of 0.66 µM and excellent sensitivity, selectivity, and reproducibility. Hence, we envision that interface-assisted polymerization offers a nascent and robust strategy for encapsulating unusual electrode materials in polymeric matrices.

2.
J Mater Chem B ; 11(5): 1144-1158, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36645247

RESUMEN

Steadfast efforts have been made to develop novel materials and incorporate them into functional devices for practical applications, pushing the research on electroactive materials to the forefront of nano electronics. Liquid/liquid interface-assisted polymerization offers a scalable methodology to fabricate hybrid materials with multifunctional applications, in contrast to the conventional and ubiquitous routes. Here, we explored this efficient and versatile approach toward the in situ tailoring of Au-Ag alloy nanostructures with a conducting polymer, poly(3,4-ethylene-dioxythiophene) (PEDOT). With the appropriate choice of organic and inorganic phases for the distribution of monomer and oxidant, the miscibility restraints of the reactants in a single phase were alleviated. Effective nanostructure tuning of highly crystalline and electroactive PEDOT/Au-Ag alloy has been achieved by varying the molar ratio of Au3+/Ag+ in the reaction mixture. The as-synthesized composite is further explored to detect neuromodulator histamine (HA), which displays high sensitivity with a limit of detection (LOD) of 1.5 nM, and selectivity even in the presence of various interfering analogs of 10-fold concentration. Subsequently, density functional theory (DFT) simulations are employed to assess the mode of interaction between HA and the electroactive surfaces. The competency to detect HA in preserved food entails its potential in food spoilage monitoring. Furthermore, the detection of histamine generated by sub-cultured human neuronal cells SH-SY5Y proves its practical viability in health monitoring devices.


Asunto(s)
Histamina , Neuroblastoma , Humanos , Solventes , Aleaciones
3.
Langmuir ; 36(4): 872-879, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-31927970

RESUMEN

Herein, we report a facile regulation of the interface of two immiscible solvents, n-butanol and water, to achieve the physicochemical tuning of the transition-metal oxide nickel cobaltite. The crystal nucleation and the growth of nickel cobaltite into distinct morphology are highly dependent on the orientation and the mass transfer of the reactive species through the reactive interface layer. A distinct two-dimensional flakelike (1 nm thickness) nickel cobaltite is formed at the interface of n-butanol/water in a 1:1 solvent ratio. Rather, one-dimensional needles and irregular interconnected networks are achieved, as aqueous and organic counterparts are, respectively, increased. The impact of the solvent ratio on doping metal ions (Co2+ and Ni2+) at the interstitial sites of fcc spinel structure is evident from the X-ray and electronic absorption investigations. It is presumed that the interface-assisted synthesis may provide a simple and novel way to develop and adopt various transition-metal oxides for wide applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...