Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Natl Cancer Inst ; 112(7): 756-764, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31647544

RESUMEN

BACKGROUND: We aimed to systematically evaluate telomere dynamics across a spectrum of pediatric cancers, search for underlying molecular mechanisms, and assess potential prognostic value. METHODS: The fraction of telomeric reads was determined from whole-genome sequencing data for paired tumor and normal samples from 653 patients with 23 cancer types from the Pediatric Cancer Genome Project. Telomere dynamics were characterized as the ratio of telomere fractions between tumor and normal samples. Somatic mutations were gathered, RNA sequencing data for 330 patients were analyzed for gene expression, and Cox regression was used to assess the telomere dynamics on patient survival. RESULTS: Telomere lengthening was observed in 28.7% of solid tumors, 10.5% of brain tumors, and 4.3% of hematological cancers. Among 81 samples with telomere lengthening, 26 had somatic mutations in alpha thalassemia/mental retardation syndrome X-linked gene, corroborated by a low level of the gene expression in the subset of tumors with RNA sequencing. Telomerase reverse transcriptase gene amplification and/or activation was observed in 10 tumors with telomere lengthening, including two leukemias of the E2A-PBX1 subtype. Among hematological cancers, pathway analysis for genes with expressions most negatively correlated with telomere fractions suggests the implication of a gene ontology process of antigen presentation by Major histocompatibility complex class II. A higher ratio of telomere fractions was statistically significantly associated with poorer survival for patients with brain tumors (hazard ratio = 2.18, 95% confidence interval = 1.37 to 3.46). CONCLUSION: Because telomerase inhibitors are currently being explored as potential agents to treat pediatric cancer, these data are valuable because they identify a subpopulation of patients with reactivation of telomerase who are most likely to benefit from this novel therapeutic option.


Asunto(s)
Neoplasias/genética , Homeostasis del Telómero , Acortamiento del Telómero , Telómero/genética , Adolescente , Niño , Preescolar , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Mutación , Telomerasa/genética , Secuenciación Completa del Genoma
2.
Sci Rep ; 9(1): 10357, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31316100

RESUMEN

VCF2CNA is a tool (Linux commandline or web-interface) for copy-number alteration (CNA) analysis and tumor purity estimation of paired tumor-normal VCF variant file formats. It operates on whole genome and whole exome datasets. To benchmark its performance, we applied it to 46 adult glioblastoma and 146 pediatric neuroblastoma samples sequenced by Illumina and Complete Genomics (CGI) platforms respectively. VCF2CNA was highly consistent with a state-of-the-art algorithm using raw sequencing data (mean F1-score = 0.994) in high-quality whole genome glioblastoma samples and was robust to uneven coverage introduced by library artifacts. In the whole genome neuroblastoma set, VCF2CNA identified MYCN high-level amplifications in 31 of 32 clinically validated samples compared to 15 found by CGI's HMM-based CNA model. Moreover, VCF2CNA achieved highly consistent CNA profiles between WGS and WXS platforms (mean F1 score 0.97 on a set of 15 rhabdomyosarcoma samples). In addition, VCF2CNA provides accurate tumor purity estimates for samples with sufficient CNAs. These results suggest that VCF2CNA is an accurate, efficient and platform-independent tool for CNA and tumor purity analyses without accessing raw sequence data.


Asunto(s)
Variaciones en el Número de Copia de ADN , ADN de Neoplasias/genética , Secuenciación del Exoma , Genes Relacionados con las Neoplasias , Glioblastoma/genética , Neuroblastoma/genética , Programas Informáticos , Secuenciación Completa del Genoma , Adulto , Algoritmos , Artefactos , Niño , Células Clonales , Conjuntos de Datos como Asunto , Amplificación de Genes , Humanos , Internet , Neoplasias/genética , Polimorfismo de Nucleótido Simple , Rabdomiosarcoma/genética , Interfaz Usuario-Computador
3.
Mol Cancer Res ; 17(4): 895-906, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30651371

RESUMEN

To investigate the genomic evolution of metastatic pediatric osteosarcoma, we performed whole-genome and targeted deep sequencing on 14 osteosarcoma metastases and two primary tumors from four patients (two to eight samples per patient). All four patients harbored ancestral (truncal) somatic variants resulting in TP53 inactivation and cell-cycle aberrations, followed by divergence into relapse-specific lineages exhibiting a cisplatin-induced mutation signature. In three of the four patients, the cisplatin signature accounted for >40% of mutations detected in the metastatic samples. Mutations potentially acquired during cisplatin treatment included NF1 missense mutations of uncertain significance in two patients and a KIT G565R activating mutation in one patient. Three of four patients demonstrated widespread ploidy differences between samples from the sample patient. Single-cell seeding of metastasis was detected in most metastatic samples. Cross-seeding between metastatic sites was observed in one patient, whereas in another patient a minor clone from the primary tumor seeded both metastases analyzed. These results reveal extensive clonal heterogeneity in metastatic osteosarcoma, much of which is likely cisplatin-induced. IMPLICATIONS: The extent and consequences of chemotherapy-induced damage in pediatric cancers is unknown. We found that cisplatin treatment can potentially double the mutational burden in osteosarcoma, which has implications for optimizing therapy for recurrent, chemotherapy-resistant disease.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Cisplatino/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Antineoplásicos/farmacología , Neoplasias Óseas/patología , Cisplatino/farmacología , Evolución Clonal/efectos de los fármacos , Análisis Mutacional de ADN , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Masculino , Modelos Genéticos , Mutagénesis/efectos de los fármacos , Metástasis de la Neoplasia , Osteosarcoma/patología , Secuenciación Completa del Genoma
4.
PLoS One ; 11(4): e0152517, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27046050

RESUMEN

In silico prediction of a protein's tertiary structure remains an unsolved problem. The community-wide Critical Assessment of Protein Structure Prediction (CASP) experiment provides a double-blind study to evaluate improvements in protein structure prediction algorithms. We developed a protein structure prediction pipeline employing a three-stage approach, consisting of low-resolution topology search, high-resolution refinement, and molecular dynamics simulation to predict the tertiary structure of proteins from the primary structure alone or including distance restraints either from predicted residue-residue contacts, nuclear magnetic resonance (NMR) nuclear overhauser effect (NOE) experiments, or mass spectroscopy (MS) cross-linking (XL) data. The protein structure prediction pipeline was evaluated in the CASP11 experiment on twenty regular protein targets as well as thirty-three 'assisted' protein targets, which also had distance restraints available. Although the low-resolution topology search module was able to sample models with a global distance test total score (GDT_TS) value greater than 30% for twelve out of twenty proteins, frequently it was not possible to select the most accurate models for refinement, resulting in a general decay of model quality over the course of the prediction pipeline. In this study, we provide a detailed overall analysis, study one target protein in more detail as it travels through the protein structure prediction pipeline, and evaluate the impact of limited experimental data.


Asunto(s)
Estructura Terciaria de Proteína , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Simulación de Dinámica Molecular , Pliegue de Proteína
5.
Plant Physiol ; 170(1): 123-35, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26556795

RESUMEN

A cellulose synthesis complex with a "rosette" shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulosa/biosíntesis , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dominio Catalítico , Celulosa/metabolismo , Escherichia coli/genética , Glucosiltransferasas/genética , Microscopía Electrónica de Transmisión , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Dispersión del Ángulo Pequeño , Difracción de Rayos X
6.
Proteins ; 83(8): 1500-12, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26018949

RESUMEN

Small angle X-ray scattering (SAXS) is an experimental technique used for structural characterization of macromolecules in solution. Here, we introduce BCL::SAXS--an algorithm designed to replicate SAXS profiles from rigid protein models at different levels of detail. We first show our derivation of BCL::SAXS and compare our results with the experimental scattering profile of hen egg white lysozyme. Using this protein we show how to generate SAXS profiles representing: (1) complete models, (2) models with approximated side chain coordinates, and (3) models with approximated side chain and loop region coordinates. We evaluated the ability of SAXS profiles to identify a correct protein topology from a non-redundant benchmark set of proteins. We find that complete SAXS profiles can be used to identify the correct protein by receiver operating characteristic (ROC) analysis with an area under the curve (AUC) > 99%. We show how our approximation of loop coordinates between secondary structure elements improves protein recognition by SAχS for protein models without loop regions and side chains. Agreement with SAXS data is a necessary but not sufficient condition for structure determination. We conclude that experimental SAXS data can be used as a filter to exclude protein models with large structural differences from the native.


Asunto(s)
Proteínas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Algoritmos , Humanos , Modelos Moleculares , Curva ROC
7.
Proteins ; 83(3): 547-63, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25581562

RESUMEN

During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template-based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger proteins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the prediction pipeline to understand BCL::Fold's ability to sample the native topology, identify native-like models by scoring and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE-only models. The standout observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the most native-like assembly of SSEs for further refinement and submission. It was also observed that for some ß-strand proteins model refinement failed as ß-strands were not properly aligned to form hydrogen bonds removing otherwise accurate models from the pool. Further, BCL::Fold samples frequently non-natural topologies that require loop regions to pass through the center of the protein.


Asunto(s)
Biología Computacional/métodos , Pliegue de Proteína , Proteínas/química , Proteínas/metabolismo , Análisis de Secuencia de Proteína/métodos , Algoritmos , Simulación por Computador , Modelos Moleculares , Conformación Proteica
8.
Comput Struct Biotechnol J ; 8: e201308006, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24688746

RESUMEN

Small angle X-ray scattering (SAXS) is used for low resolution structural characterization of proteins often in combination with other experimental techniques. After briefly reviewing the theory of SAXS we discuss computational methods based on 1) the Debye equation and 2) Spherical Harmonics to compute intensity profiles from a particular macromolecular structure. Further, we review how these formulas are parameterized for solvent density and hydration shell adjustment. Finally we introduce our solution to compute SAXS profiles utilizing GPU acceleration.

9.
AMIA Annu Symp Proc ; 2011: 1127-33, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22195173

RESUMEN

In this study, we retrieved 39 schizophrenia-related antipsychotic drugs from the DrugBank database. These drugs had interactions with 142 targets, whose corresponding genes were defined as drug targeted genes. To explore the complexity between these drugs and their related genes in schizophrenia, we constructed a drug-target gene network. These genes were overrepresented in several pathways including: neuroactive ligand-receptor pathways, glutamate metabolism, and glycine metabolism. Through integrating the pathway information into a drug-gene network, we revealed a few bridge genes connected the sub-networks of the drug-gene network: GRIN2A, GRIN3B, GRIN2C, GRIN2B, DRD1, and DRD2. These genes encode ionotropic glutamate receptors belonging to the NMDA receptor family and dopamine receptors. Haloperidol was the only drug to directly interact with these pathways and receptors and consequently may have a unique action at the drug-gene interaction level during the treatment of schizophrenia. This study represents the first systematic investigation of drug-gene interactions in psychosis.


Asunto(s)
Antipsicóticos/farmacología , Redes Reguladoras de Genes , Redes y Vías Metabólicas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética , Antipsicóticos/uso terapéutico , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Serotonina/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...