Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L29-L38, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991487

RESUMEN

Cell-free hemoglobin (CFH) is elevated in the airspace of patients with acute respiratory distress syndrome (ARDS) and is sufficient to cause acute lung injury in a murine model. However, the pathways through which CFH causes lung injury are not well understood. Toll-like receptor 4 (TLR4) is a mediator of inflammation after detection of damage- and pathogen-associated molecular patterns. We hypothesized that TLR4 signaling mediates the proinflammatory effects of CFH in the airspace. After intratracheal CFH, BALBc mice deficient in TLR4 had reduced inflammatory cell influx into the airspace [bronchoalveolar lavage (BAL) cell counts, median TLR4 knockout (KO): 0.8 × 104/mL [IQR 0.4-1.2 × 104/mL], wild-type (WT): 3.0 × 104/mL [2.2-4.0 × 104/mL], P < 0.001] and attenuated lung permeability (BAL protein, TLR4KO: 289 µg/mL [236-320], WT: 488 µg/mL [422-536], P < 0.001). These mice also had attenuated production of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in the airspace. C57Bl/6 mice lacking TLR4 on myeloid cells only (LysM.Cre+/-TLR4fl/fl) had reduced cytokine production in the airspace after CFH, without attenuation of lung permeability. In vitro studies confirm that WT primary murine alveolar macrophages exposed to CFH (0.01-1 mg/mL) had dose-dependent increases in IL-6, IL-1 ß, CXC motif chemokine ligand 1 (CXCL-1), TNF-α, and IL-10 (P < 0.001). Murine MH-S alveolar-like macrophages show TLR4-dependent expression of IL-1ß, IL-6, and CXCL-1 in response to CFH. Primary alveolar macrophages from mice lacking TLR4 adaptor proteins myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-ß (TRIF) revealed that MyD88KO macrophages had 71-96% reduction in CFH-dependent proinflammatory cytokine production (P < 0.001), whereas macrophages from TRIFKO mice had variable changes in cytokine responses. These data demonstrate that myeloid TLR4 signaling through MyD88 is a key regulator of airspace inflammation in response to CFH.NEW & NOTEWORTHY Cell-free hemoglobin (CFH) is elevated in the airspace of most patients with acute respiratory distress syndrome and causes severe inflammation. Here, we identify that CFH contributes to macrophage-induced cytokine production via Toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) signaling. These data increase our knowledge of the mechanisms through which CFH contributes to lung injury and may inform development of targeted therapeutics to attenuate inflammation.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Humanos , Ratones , Animales , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Interleucina-6/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Inflamación/etiología , Factor de Necrosis Tumoral alfa/metabolismo , Lesión Pulmonar Aguda/metabolismo , Hemoglobinas/metabolismo , Síndrome de Dificultad Respiratoria/complicaciones , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L368-L384, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489855

RESUMEN

There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.


Asunto(s)
Lesión Pulmonar Aguda , Hiperoxia , Síndrome de Dificultad Respiratoria , Sepsis , Animales , Ratones , Liraglutida/efectos adversos , Hiperoxia/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/uso terapéutico , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/inducido químicamente , Pulmón/metabolismo , Citocinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Edema
3.
Physiol Rep ; 10(11): e15290, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668576

RESUMEN

Sepsis is a devastating disease with high morbidity and mortality and no specific treatments. The pathophysiology of sepsis involves a hyperinflammatory response and release of damage-associated molecular patterns (DAMPs), including adenosine triphosphate (ATP), from activated and dying cells. Purinergic receptors activated by ATP have gained attention for their roles in sepsis, which can be pro- or anti-inflammatory depending on the context. Current data regarding the role of ATP-specific purinergic receptor P2X7 (P2X7R) in vascular function and inflammation during sepsis are conflicting, and its role on the endothelium has not been well characterized. In this study, we hypothesized that the P2X7R antagonist AZ 10606120 (AZ106) would prevent endothelial dysfunction during sepsis. As proof of concept, we first demonstrated the ability of AZ106 (10 µM) to prevent endothelial dysfunction in intact rat aorta in response to IL-1ß, an inflammatory mediator upregulated during sepsis. Likewise, blocking P2X7R with AZ106 (10 µg/g) reduced the impairment of endothelial-dependent relaxation in mice subjected to intraperitoneal injection of cecal slurry (CS), a model of polymicrobial sepsis. However, contrary to our hypothesis, AZ106 did not improve microvascular permeability or injury, lung apoptosis, or illness severity in mice subjected to CS. Instead, AZ106 elevated spleen bacterial burden and circulating inflammatory markers. In conclusion, antagonism of P2X7R signaling during sepsis appears to disrupt the balance between its roles in inflammatory, antimicrobial, and vascular function.


Asunto(s)
Receptores Purinérgicos P2X7 , Sepsis , Adenosina Trifosfato , Animales , Inflamación , Ratones , Ratas , Sepsis/microbiología , Transducción de Señal
4.
J Clin Invest ; 132(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35025767

RESUMEN

Women have higher prevalence of asthma compared with men. In asthma, allergic airway inflammation is initiated by IL-33 signaling through ST2, leading to increased IL-4, IL-5, and IL-13 production and eosinophil infiltration. Foxp3+ Tregs suppress and ST2+ Tregs promote allergic airway inflammation. Clinical studies showed that the androgen dehydroepiandrosterone (DHEA) reduced asthma symptoms in patients, and mouse studies showed that androgen receptor (AR) signaling decreased allergic airway inflammation. Yet the impact of AR signaling on lung Tregs remains unclear. Using AR-deficient and Foxp3 fate-mapping mice, we determined that AR signaling increased Treg suppression during Alternaria extract (Alt Ext; allergen) challenge by stabilizing Foxp3+ Tregs and limiting the number of ST2+ ex-Tregs and IL-13+ Th2 cells and ex-Tregs. AR signaling also decreased Alt Ext-induced ST2+ Tregs in mice by limiting expression of Gata2, a transcription factor for ST2, and by decreasing Alt Ext-induced IL-33 production from murine airway epithelial cells. We confirmed our findings in human cells where 5α-dihydrotestosterone (DHT), an androgen, decreased IL-33-induced ST2 expression in lung Tregs and decreased Alt Ext-induced IL-33 secretion in human bronchial epithelial cells. Our findings showed that AR signaling stabilized Treg suppressive function, providing a mechanism for the sex difference in asthma.


Asunto(s)
Asma/inmunología , Receptores Androgénicos/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Asma/genética , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Receptores Androgénicos/genética , Transducción de Señal/genética
5.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L273-L282, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936510

RESUMEN

Mouse models of acute lung injury (ALI) have been instrumental for studies of the biological underpinnings of lung inflammation and permeability, but murine models of sepsis generate minimal lung injury. Our goal was to create a murine sepsis model of ALI that reflects the inflammation, lung edema, histological abnormalities, and physiological dysfunction that characterize ALI. Using a cecal slurry (CS) model of polymicrobial abdominal sepsis and exposure to hyperoxia (95%), we systematically varied the timing and dose of the CS injection, fluids and antibiotics, and dose of hyperoxia. We found that CS alone had a high mortality rate that was improved with the addition of antibiotics and fluids. Despite this, we did not see evidence of ALI as measured by bronchoalveolar lavage (BAL) cell count, total protein, C-X-C motif chemokine ligand 1 (CXCL-1) or by lung wet:dry weight ratio. Addition of hyperoxia [95% fraction of inspired oxygen ([Formula: see text])] to CS immediately after CS injection increased BAL cell counts, CXCL-1, and lung wet:dry weight ratio but was associated with 40% mortality. Splitting the hyperoxia treatment into two 12-h exposures (0-12 h and 24-36 h) after CS injection increased survival to 75% and caused significant lung injury compared with CS alone as measured by increased BAL total cell count (92,500 vs. 240,000, P = 0.0004), BAL protein (71 vs. 103 µg/mL, P = 0.0030), and lung wet:dry weight ratio (4.5 vs. 5.5, P = 0.0005), and compared with sham as measured by increased BAL CXCL-1 (20 vs. 2,372 pg/mL, P < 0.0001) and histological lung injury score (1.9 vs. 4.2, P = 0.0077). In addition, our final model showed evidence of lung epithelial [increased BAL and plasma receptor for advanced glycation end products (RAGE)] and endothelial (increased Syndecan-1 and sulfated glycosaminoglycans) injury. In conclusion, we have developed a clinically relevant mouse model of sepsis-induced ALI using intraperitoneal injection of CS, antibiotics and fluids, and hyperoxia. This clinically relevant model can be used for future studies of sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Hiperoxia , Sepsis , Lesión Pulmonar Aguda/patología , Animales , Antibacterianos/efectos adversos , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Hiperoxia/complicaciones , Hiperoxia/patología , Inflamación/patología , Pulmón/metabolismo , Ratones , Permeabilidad , Sepsis/patología
6.
Nutrients ; 12(4)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32224930

RESUMEN

Vitamin C (ascorbate, ASC) is a critical antioxidant in the body with specific roles in the brain. Despite a recent interest in vitamin C therapies for critical care medicine, little is known about vitamin C regulation during acute inflammation and critical illnesses such as sepsis. Using a cecal slurry (CS) model of sepsis in mice, we determined ASC and inflammatory changes in the brain following the initial treatment. ASC levels in the brain were acutely decreased by approximately 10% at 4 and 24 h post CS treatment. Changes were accompanied by a robust increase in liver ASC levels of up to 50%, indicating upregulation of synthesis beginning at 4 h and persisting up to 7 days post CS treatment. Several key cytokines interleukin 6 (IL-6), interleukin 1ß (IL-1ß), tumor necrosis factor alpha (TNFα), and chemokine (C-X-C motif) ligand 1 (CXCL1, KC/Gro) were also significantly elevated in the cortex at 4 h post CS treatment, although these levels returned to normal by 48 h. These data strongly suggest that ASC reserves are directly challenged throughout illness and recovery from sepsis. Given the timescale of this response, decreases in cortical ASC are likely driven by hyper-acute neuroinflammatory processes. However, future studies are required to confirm this relationship and to investigate how this deficiency may subsequently impact neuroinflammation.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Encéfalo/metabolismo , Sepsis/metabolismo , Animales , Antioxidantes/análisis , Antioxidantes/metabolismo , Ácido Ascórbico/análisis , Ácido Ascórbico/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos
7.
PLoS One ; 15(2): e0228727, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32012200

RESUMEN

Increased endothelial permeability is central to the pathogenesis of sepsis and leads to organ dysfunction and death but the endogenous mechanisms that drive increased endothelial permeability are not completely understood. We previously reported that cell-free hemoglobin (CFH), elevated in 80% of patients with sepsis, increases lung microvascular permeability in an ex vivo human lung model and cultured endothelial cells. In this study, we augmented a murine model of polymicrobial sepsis with elevated circulating CFH to test the hypothesis that CFH increases microvascular endothelial permeability by inducing endothelial apoptosis. Mice were treated with an intraperitoneal injection of cecal slurry with or without a single intravenous injection of CFH. Severity of illness, mortality, systemic and lung inflammation, endothelial injury and dysfunction and lung apoptosis were measured at selected time points. We found that CFH added to CS increased sepsis mortality, plasma inflammatory cytokines as well as lung apoptosis, edema and inflammation without affecting large vessel reactivity or vascular injury marker concentrations. These results suggest that CFH is an endogenous mediator of increased endothelial permeability and apoptosis in sepsis and may be a promising therapeutic target.


Asunto(s)
Apoptosis , Permeabilidad Capilar , Hemoglobinas/metabolismo , Pulmón/irrigación sanguínea , Pulmón/patología , Sepsis/metabolismo , Sepsis/patología , Animales , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Sepsis/microbiología
8.
JCI Insight ; 4(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31573976

RESUMEN

Acute respiratory distress syndrome (ARDS) is an inflammatory lung disorder that frequently complicates critical illness and commonly occurs in sepsis. Although numerous clinical and environmental risk factors exist, not all patients with risk factors develop ARDS, raising the possibility of genetic underpinnings for ARDS susceptibility. We have previously reported that circulating cell-free hemoglobin (CFH) is elevated during sepsis, and higher levels predict worse outcomes. Excess CFH is rapidly scavenged by haptoglobin (Hp). A common HP genetic variant, HP2, is unique to humans and is common in many populations worldwide. HP2 haptoglobin has reduced ability to inhibit CFH-mediated inflammation and oxidative stress compared with the alternative HP1. We hypothesized that HP2 increases ARDS susceptibility during sepsis when plasma CFH levels are elevated. In a murine model of sepsis with elevated CFH, transgenic mice homozygous for Hp2 had increased lung inflammation, pulmonary vascular permeability, lung apoptosis, and mortality compared with wild-type mice. We then tested the clinical relevance of our findings in 496 septic critically ill adults, finding that HP2 increased ARDS susceptibility after controlling for clinical risk factors and plasma CFH. These observations identify HP2 as a potentially novel genetic ARDS risk factor during sepsis and may have important implications in the study and treatment of ARDS.


Asunto(s)
Haptoglobinas/genética , Síndrome de Dificultad Respiratoria/genética , Sepsis/complicaciones , Adulto , Animales , Apoptosis , Permeabilidad Capilar , Predisposición Genética a la Enfermedad , Humanos , Pulmón/irrigación sanguínea , Pulmón/patología , Ratones , Ratones Transgénicos , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/patología , Análisis de Supervivencia
9.
Am J Physiol Renal Physiol ; 317(4): F922-F929, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31364379

RESUMEN

Acute kidney injury is a common complication of severe sepsis and contributes to high mortality. The molecular mechanisms of acute kidney injury during sepsis are not fully understood. Because hemoproteins, including myoglobin and hemoglobin, are known to mediate kidney injury during rhabdomyolysis, we hypothesized that cell-free hemoglobin (CFH) would exacerbate acute kidney injury during sepsis. Sepsis was induced in mice by intraperitoneal injection of cecal slurry (CS). To mimic elevated levels of CFH observed during human sepsis, mice also received a retroorbital injection of CFH or dextrose control. Four groups of mice were analyzed: sham treated (sham), CFH alone, CS alone, and CS + CFH. The addition of CFH to CS reduced 48-h survival compared with CS alone (67% vs. 97%, P = 0.001) and increased the severity of illness. After 24 and 48 h, CS + CFH mice had a reduced glomerular filtration rate from baseline, whereas sham, CFH, and CS mice maintained baseline glomerular filtration rate. Biomarkers of acute kidney injury, neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), were markedly elevated in CS+CFH compared with CS (8-fold for NGAL and 2.4-fold for KIM-1, P < 0.002 for each) after 48 h. Histological examination showed a trend toward increased tubular injury in CS + CFH-exposed kidneys compared with CS-exposed kidneys. However, there were similar levels of renal oxidative injury and apoptosis in the CS + CFH group compared with the CS group. Kidney levels of multiple proinflammatory cytokines were similar between CS and CS + CFH groups. Human renal tubule cells (HK-2) exposed to CFH demonstrated increased cytotoxicity. Together, these results show that CFH exacerbates acute kidney injury in a mouse model of experimental sepsis, potentially through increased renal tubular injury.


Asunto(s)
Lesión Renal Aguda/patología , Hemoglobinas/toxicidad , Sepsis/patología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/fisiopatología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Sistema Libre de Células , Citocinas/metabolismo , Femenino , Tasa de Filtración Glomerular , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales/patología , Lipocalina 2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Sepsis/complicaciones , Análisis de Supervivencia
10.
J Appl Physiol (1985) ; 124(4): 899-905, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357510

RESUMEN

Acute respiratory distress syndrome (ARDS) is characterized by lung inflammation and pulmonary edema, leading to arterial hypoxemia and death if the hypoxemia is severe. Strategies to correct hypoxemia have the potential to improve clinical outcomes in ARDS. The goal of this study was to evaluate the potential of hemoglobin modification as a novel therapy for ARDS-induced hypoxemia. The therapeutic effect of two different doses of GBT1118, a compound that increases the oxygen affinity of hemoglobin, was evaluated in a murine model of acute lung injury induced by intratracheal LPS instillation 24 h before exposure to 5% or 10% hypoxia ( n = 8-15 per group). As expected, administration of GBT1118 to mice significantly increased the oxygen affinity of hemoglobin. Compared with mice receiving vehicle control, mice treated with GBT1118 had significantly lower mortality after LPS + 5% hypoxia (47% with vehicle vs. 22% with low-dose GBT1118, 13% with high-dose GBT1118, P = 0.032 by log rank) and had reduced severity of illness. Mice treated with GBT1118 showed a sustained significant increase in SpO2 over 4 h of hypoxia exposure. Treatment with GBT1118 did not alter alveolar-capillary permeability, bronchoalveolar lavage (BAL) inflammatory cell counts, or BAL concentrations of IL-1ß, TNF-α, or macrophage inflammatory protein-1α. High-dose GBT1118 did not affect histological lung injury but did decrease tissue hypoxia as measured intensity of pimonidazole (Hypoxyprobe) staining in liver ( P = 0.043) and kidney ( P = 0.043). We concluded that increasing the oxygen affinity of hemoglobin using GBT1118 may be a novel therapy for treating hypoxemia associated with acute lung injury. NEW & NOTEWORTHY In this study, we show that GBT1118, a compound that increases hemoglobin affinity for oxygen, improves survival and oxygen saturation in a two-hit lung injury model of intratracheal LPS without causing tissue hypoxia. Modulation of hemoglobin oxygen affinity represents a novel therapeutic approach to treatment of acute lung injury and acute respiratory distress syndrome, conditions characterized by hypoxemia.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Benzaldehídos/uso terapéutico , Niacinamida/análogos & derivados , Lesión Pulmonar Aguda/etiología , Animales , Benzaldehídos/farmacología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Niacinamida/farmacología , Niacinamida/uso terapéutico
11.
Am J Physiol Lung Cell Mol Physiol ; 310(6): L532-41, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773065

RESUMEN

Patients with the acute respiratory distress syndrome (ARDS) have elevated levels of cell-free hemoglobin (CFH) in the air space, but the contribution of CFH to the pathogenesis of acute lung injury is unknown. In the present study, we demonstrate that levels of CFH in the air space correlate with measures of alveolar-capillary barrier dysfunction in humans with ARDS (r = 0.89, P < 0.001) and in mice with ventilator-induced acute lung injury (r = 0.89, P < 0.001). To investigate the specific contribution of CFH to ARDS, we studied the impact of purified CFH in the mouse lung and on cultured mouse lung epithelial (MLE-12) cells. Intratracheal delivery of CFH in mice causes acute lung injury with air space inflammation and alveolar-capillary barrier disruption. Similarly, in MLE-12 cells, CFH increases proinflammatory cytokine expression and increases paracellular permeability as measured by electrical cell-substrate impedance sensing. Next, to determine whether these effects are mediated by the iron-containing heme moiety of CFH, we treated mice with intratracheal hemin, the chloride salt of heme, and found that hemin was sufficient to increase alveolar permeability but failed to induce proinflammatory cytokine expression or epithelial cell injury. Together, these data identify CFH in the air space as a previously unrecognized driver of lung epithelial injury in human and experimental ARDS and suggest that CFH and hemin may contribute to ARDS through different mechanisms. Interventions targeting CFH and heme in the air space could provide a new therapeutic approach for ARDS.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Hemoglobinas/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Lesión Pulmonar Aguda/inmunología , Células Epiteliales Alveolares/inmunología , Células Epiteliales Alveolares/metabolismo , Animales , Biomarcadores/metabolismo , Línea Celular , Permeabilidad de la Membrana Celular , Citocinas/biosíntesis , Humanos , Lipopolisacáridos/farmacología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Síndrome de Dificultad Respiratoria/inmunología
12.
Am J Respir Cell Mol Biol ; 53(5): 719-27, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25884207

RESUMEN

Tissue factor (TF) initiates the extrinsic coagulation cascade in response to tissue injury, leading to local fibrin deposition. Low levels of TF in mice are associated with increased severity of acute lung injury (ALI) after intratracheal LPS administration. However, the cellular sources of the TF required for protection from LPS-induced ALI remain unknown. In the current study, transgenic mice with cell-specific deletions of TF in the lung epithelium or myeloid cells were treated with intratracheal LPS to determine the cellular sources of TF important in direct ALI. Cell-specific deletion of TF in the lung epithelium reduced total lung TF expression to 39% of wild-type (WT) levels at baseline and to 29% of WT levels after intratracheal LPS. In contrast, there was no reduction of TF with myeloid cell TF deletion. Mice lacking myeloid cell TF did not differ from WT mice in coagulation, inflammation, permeability, or hemorrhage. However, mice lacking lung epithelial TF had increased tissue injury, impaired activation of coagulation in the airspace, disrupted alveolar permeability, and increased alveolar hemorrhage after intratracheal LPS. Deletion of epithelial TF did not affect alveolar permeability in an indirect model of ALI caused by systemic LPS infusion. These studies demonstrate that the lung epithelium is the primary source of TF in the lung, contributing 60-70% of total lung TF, and that lung epithelial, but not myeloid, TF may be protective in direct ALI.


Asunto(s)
Lesión Pulmonar Aguda/genética , Coagulación Sanguínea/genética , Permeabilidad Capilar/genética , Hemorragia/genética , Síndrome de Dificultad Respiratoria/genética , Tromboplastina/genética , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Expresión Génica , Hemorragia/inducido químicamente , Hemorragia/metabolismo , Hemorragia/patología , Lipopolisacáridos , Ratones , Ratones Noqueados , Células Mieloides/metabolismo , Células Mieloides/patología , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Tromboplastina/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...