Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 3(12): e1701626, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29230435

RESUMEN

Nonlinear systems, whose outputs are not directly proportional to their inputs, are well known to exhibit many interesting and important phenomena that have profoundly changed our technological landscape over the last 50 years. Recently, the ability to engineer quantum metamaterials through hybridization has allowed us to explore these nonlinear effects in systems with no natural analog. We investigate amplitude bistability, which is one of the most fundamental nonlinear phenomena, in a hybrid system composed of a superconducting resonator inductively coupled to an ensemble of nitrogen-vacancy centers. One of the exciting properties of this spin system is its long spin lifetime, which is many orders of magnitude longer than other relevant time scales of the hybrid system. This allows us to dynamically explore this nonlinear regime of cavity quantum electrodynamics and demonstrate a critical slowing down of the cavity population on the order of several tens of thousands of seconds-a time scale much longer than observed so far for this effect. Our results provide a foundation for future quantum technologies based on nonlinear phenomena.

2.
Neural Plast ; 2016: 3760702, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27247802

RESUMEN

Disturbances in neuronal differentiation and function are an underlying factor of many brain disorders. Zinc homeostasis and signaling are important mediators for a normal brain development and function, given that zinc deficiency was shown to result in cognitive and emotional deficits in animal models that might be associated with neurodevelopmental disorders. One underlying mechanism of the observed detrimental effects of zinc deficiency on the brain might be impaired proliferation and differentiation of stem cells participating in neurogenesis. Thus, to examine the molecular mechanisms regulating zinc metabolism and signaling in differentiating neurons, using a protocol for motor neuron differentiation, we characterized the expression of zinc homeostasis genes during neurogenesis using human induced pluripotent stem cells (hiPSCs) and evaluated the influence of altered zinc levels on the expression of zinc homeostasis genes, cell survival, cell fate, and neuronal function. Our results show that zinc transporters are highly regulated genes during neuronal differentiation and that low zinc levels are associated with decreased cell survival, altered neuronal differentiation, and, in particular, synaptic function. We conclude that zinc deficiency in a critical time window during brain development might influence brain function by modulating neuronal differentiation.


Asunto(s)
Homeostasis/fisiología , Células Madre Pluripotentes Inducidas/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Zinc/metabolismo , Apoptosis/fisiología , Supervivencia Celular/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Transducción de Señal/fisiología
3.
Stem Cells ; 34(6): 1563-75, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26946488

RESUMEN

Despite decades of research on amyotrophic lateral sclerosis (ALS), there is only one approved drug, which minimally extends patient survival. Here, we investigated pathophysiological mechanisms underlying ALS using motor neurons (MNs) differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying mutations in FUS or SOD1. Patient-derived MNs were less active and excitable compared to healthy controls, due to reduced Na(+) /K(+) ratios in both ALS groups accompanied by elevated potassium channel (FUS) and attenuated sodium channel expression levels (FUS, SOD1). ALS iPSC-derived MNs showed elevated endoplasmic reticulum stress (ER) levels and increased caspase activation. Treatment with the FDA approved drug 4-Aminopyridine (4AP) restored ion-channel imbalances, increased neuronal activity levels and decreased ER stress and caspase activation. This study provides novel pathophysiological data, including a mechanistic explanation for the observed hypoexcitability in patient-derived MNs and a new therapeutic strategy to provide neuroprotection in MNs affected by ALS. Stem Cells 2016;34:1563-1575.


Asunto(s)
4-Aminopiridina/farmacología , Esclerosis Amiotrófica Lateral/patología , Células Madre Pluripotentes Inducidas/patología , Neuronas Motoras/patología , Esclerosis Amiotrófica Lateral/genética , Caspasas/metabolismo , Diferenciación Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Canales Iónicos/metabolismo , Masculino , Persona de Mediana Edad , Mutación/genética , Neuroprotección/efectos de los fármacos , Fenotipo , Proteína FUS de Unión a ARN/genética , Superóxido Dismutasa/genética , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
4.
Front Cell Neurosci ; 10: 290, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28082870

RESUMEN

Mutations within the FUS gene (Fused in Sarcoma) are known to cause Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease affecting upper and lower motoneurons. The FUS gene codes for a multifunctional RNA/DNA-binding protein that is primarily localized in the nucleus and is involved in cellular processes such as splicing, translation, mRNA transport and DNA damage response. In this study, we analyzed pathophysiological alterations associated with ALS related FUS mutations (mFUS) in human induced pluripotent stem cells (hiPSCs) and hiPSC derived motoneurons. To that end, we compared cells carrying a mild or severe mFUS in physiological- and/or stress conditions as well as after induced DNA damage. Following hyperosmolar stress or irradiation, mFUS hiPS cells recruited significantly more cytoplasmatic FUS into stress granules accompanied by impaired DNA-damage repair. In motoneurons wild-type FUS was localized in the nucleus but also deposited as small punctae within neurites. In motoneurons expressing mFUS the protein was additionally detected in the cytoplasm and a significantly increased number of large, densely packed FUS positive stress granules were seen along neurites. The amount of FUS mislocalization correlated positively with both the onset of the human disease (the earlier the onset the higher the FUS mislocalization) and the maturation status of the motoneurons. Moreover, even in non-stressed post-mitotic mFUS motoneurons clear signs of DNA-damage could be detected. In summary, we found that the susceptibility to cell stress was higher in mFUS hiPSCs and hiPSC derived motoneurons than in controls and the degree of FUS mislocalization correlated well with the clinical severity of the underlying ALS related mFUS. The accumulation of DNA damage and the cellular response to DNA damage stressors was more pronounced in post-mitotic mFUS motoneurons than in dividing hiPSCs suggesting that mFUS motoneurons accumulate foci of DNA damage, which in turn might be directly linked to neurodegeneration.

5.
Neurobiol Dis ; 82: 420-429, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26253605

RESUMEN

Autosomal-dominant mutations within the gene FUS (fused in sarcoma) are responsible for 5% of familial cases of amyotrophic lateral sclerosis (ALS). The FUS protein is physiologically mainly located in the nucleus, while cytoplasmic FUS aggregates are pathological hallmarks of FUS-ALS. Data from non-neuronal cell models and/or models using heterologous expression of FUS mutants suggest cytoplasmic FUS translocation as a pivotal initial event which leads to neurodegeneration depending on a second hit. Here we present the first human model of FUS-ALS using patient-derived neurons carrying endogenous FUS mutations leading to a benign (R521C) or a more severe clinical phenotype (frameshift mutation R495QfsX527). We thereby showed that the severity of the underlying FUS mutation determines the amount of cytoplasmic FUS accumulation and cellular vulnerability to exogenous stress. Cytoplasmic FUS inclusions formed spontaneously depending on both, severity of FUS mutation and neuronal aging. These aggregates showed typical characteristics of FUS-ALS including methylated FUS. Finally, neurodegeneration was not specific to layer V cortical neurons perfectly in line with the current model of disease spreading in ALS. Our study highlights the value and usefulness of patient-derived cell models in FUS-ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Células Madre Pluripotentes Inducidas/patología , Neuronas/patología , Proteína FUS de Unión a ARN/genética , Adulto , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Progresión de la Enfermedad , Femenino , Humanos , Cuerpos de Inclusión/patología , Cuerpos de Inclusión/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Persona de Mediana Edad , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Mutación , Neuronas/fisiología , Fenotipo , Proteína FUS de Unión a ARN/metabolismo , Índice de Severidad de la Enfermedad , Médula Espinal/patología , Médula Espinal/fisiopatología
6.
Nat Neurosci ; 18(5): 631-6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25803835

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative syndrome hallmarked by adult-onset loss of motor neurons. We performed exome sequencing of 252 familial ALS (fALS) and 827 control individuals. Gene-based rare variant analysis identified an exome-wide significant enrichment of eight loss-of-function (LoF) mutations in TBK1 (encoding TANK-binding kinase 1) in 13 fALS pedigrees. No enrichment of LoF mutations was observed in a targeted mutation screen of 1,010 sporadic ALS and 650 additional control individuals. Linkage analysis in four families gave an aggregate LOD score of 4.6. In vitro experiments confirmed the loss of expression of TBK1 LoF mutant alleles, or loss of interaction of the C-terminal TBK1 coiled-coil domain (CCD2) mutants with the TBK1 adaptor protein optineurin, which has been shown to be involved in ALS pathogenesis. We conclude that haploinsufficiency of TBK1 causes ALS and fronto-temporal dementia.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Exoma , Demencia Frontotemporal/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Alelos , Esclerosis Amiotrófica Lateral/epidemiología , Proteínas de Ciclo Celular , Células Cultivadas , Codón sin Sentido , Análisis Mutacional de ADN , Europa (Continente)/epidemiología , Femenino , Demencia Frontotemporal/epidemiología , Frecuencia de los Genes , Heterogeneidad Genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Proteínas de Transporte de Membrana , Mutación Missense , Linaje , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Factor de Transcripción TFIIIA/metabolismo
7.
Front Cell Neurosci ; 9: 496, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26834559

RESUMEN

Fused in Sarcoma (FUS) is a multifunctional RNA-/DNA-binding protein, which is involved in the pathogenesis of the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A common hallmark of these disorders is the abnormal accumulation of mutated FUS protein in the cytoplasm. Under normal conditions FUS is confined to the nuclear compartment, in neurons, however, additional somatodendritic localization can be observed. In this study, we carefully analyzed the subcellular localization of endogenous FUS at synaptic sites of hippocampal neurons which are among the most affected cell types in FTD with FUS pathology. We could confirm a strong nuclear localization of FUS as well as its prominent and widespread neuronal expression throughout the adult and developing rat brain, particularly in the hippocampus, the cerebellum and the outer layers of the cortex. Intriguingly, FUS was also consistently observed at synaptic sites as detected by neuronal subcellular fractionation as well as by immunolabeling. To define a pre- and/or postsynaptic localization of FUS, we employed super-resolution fluorescence localization microscopy. FUS was found to be localized within the axon terminal in close proximity to the presynaptic vesicle protein Synaptophysin1 and adjacent to the active zone protein Bassoon, but well separated from the postsynaptic protein PSD-95. Having shown the presynaptic localization of FUS in the nervous system, a novel extranuclear role of FUS at neuronal contact sites has to be considered. Since there is growing evidence that local presynaptic translation might also be an important mechanism for plasticity, FUS - like the fragile X mental retardation protein FMRP - might act as one of the presynaptic RNA-binding proteins regulating this machinery. Our observation of presynaptic FUS should foster further investigations to determine its role in neurodegenerative diseases such as ALS and FTD.

8.
J Neural Transm (Vienna) ; 120(5): 785-98, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23143281

RESUMEN

The dynactin p150glued subunit, encoded by the gene DCTN1 is part of the dynein-dynactin motor protein complex responsible for retrograde axonal transport. This subunit is a candidate modifier for neurodegenerative diseases, in particular motoneuron and extrapyramidal diseases. Based on an extensive screening effort of all 32 exons in more than 2,500 ALS/MND patients, patients suffering from Parkinsonian Syndromes and controls, we investigated 24 sequence variants of p150 in cell-based studies. We used both non-neuronal cell lines and primary rodent spinal motoneurons and report on cell biological abnormalities in five of these sequence alterations and also briefly report on the clinical features. Our results suggest the presence of biological changes caused by some p150 mutants pointing to a potential pathogenetic significance as modifier of the phenotype of the human disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas Asociadas a Microtúbulos/genética , Neuronas Motoras/metabolismo , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , Proteínas Adaptadoras Transductoras de Señales , Esclerosis Amiotrófica Lateral/patología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Complejo Dinactina , Embrión de Mamíferos , Femenino , Proteínas Fluorescentes Verdes/genética , Humanos , Masculino , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuronas Motoras/patología , Neuronas Motoras/ultraestructura , Mutación/genética , Embarazo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Ratas , Ratas Sprague-Dawley , Estudios Retrospectivos , Médula Espinal/citología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA