Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sci Rep ; 14(1): 13031, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844758

RESUMEN

Valence (positive and negative) and content (embodied vs non-embodied) characteristics of visual stimuli have been shown to influence motor readiness, as tested with response time paradigms. Both embodiment and emotional processing are affected in Parkinson's disease (PD) due to basal ganglia dysfunction. Here we aimed to investigate, using a two-choice response time paradigm, motor readiness when processing embodied (emotional body language [EBL] and emotional facial expressions [FACS]) vs non-embodied (emotional scenes [IAPS]) stimuli with neutral, happy, and fearful content. We enrolled twenty-five patients with early-stage PD and twenty-five age matched healthy participants. Motor response during emotional processing was assessed by measuring response times (RTs) in a home-based, forced two-choice discrimination task where participants were asked to discriminate the emotional stimulus from the neutral one. Rating of valence and arousal was also performed. A clinical and neuropsychological evaluation was performed on PD patients. Results showed that RTs for PD patients were longer for all conditions compared to HC and that RTs were generally longer in both groups for EBL compared to FACS and IAPS, with the sole exception retrieved for PD, where in discriminating fearful stimuli, RTs for EBL were longer compared to FACS but not to IAPS. Furthermore, in PD only, when discriminating fearful respect to neutral stimuli, RTs were shorter when discriminating FACS compared to IAPS. This study shows that PD patients were faster in discriminating fearful embodied stimuli, allowing us to speculate on mechanisms involving an alternative, compensatory, emotional motor pathway for PD patients undergoing fear processing.


Asunto(s)
Emociones , Expresión Facial , Enfermedad de Parkinson , Tiempo de Reacción , Humanos , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Emociones/fisiología , Tiempo de Reacción/fisiología , Anciano , Persona de Mediana Edad , Estimulación Luminosa , Estudios de Casos y Controles
2.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732980

RESUMEN

Walking encompasses a complex interplay of neuromuscular coordination and cognitive processes. Disruptions in gait can impact personal independence and quality of life, especially among the elderly and neurodegenerative patients. While traditional biomechanical analyses and neuroimaging techniques have contributed to understanding gait control, they often lack the temporal resolution needed for rapid neural dynamics. This study employs a mobile brain/body imaging (MoBI) platform with high-density electroencephalography (hd-EEG) to explore event-related desynchronization and synchronization (ERD/ERS) during overground walking. Simultaneous to hdEEG, we recorded gait spatiotemporal parameters. Participants were asked to walk under usual walking and dual-task walking conditions. For data analysis, we extracted ERD/ERS in α, ß, and γ bands from 17 selected regions of interest encompassing not only the sensorimotor cerebral network but also the cognitive and affective networks. A correlation analysis was performed between gait parameters and ERD/ERS intensities in different networks in the different phases of gait. Results showed that ERD/ERS modulations across gait phases in the α and ß bands extended beyond the sensorimotor network, over the cognitive and limbic networks, and were more prominent in all networks during dual tasks with respect to usual walking. Correlation analyses showed that a stronger α ERS in the initial double-support phases correlates with shorter step length, emphasizing the role of attention in motor control. Additionally, ß ERD/ERS in affective and cognitive networks during dual-task walking correlated with dual-task gait performance, suggesting compensatory mechanisms in complex tasks. This study advances our understanding of neural dynamics during overground walking, emphasizing the multidimensional nature of gait control involving cognitive and affective networks.


Asunto(s)
Encéfalo , Electroencefalografía , Marcha , Caminata , Humanos , Marcha/fisiología , Masculino , Electroencefalografía/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Femenino , Adulto , Caminata/fisiología , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Adulto Joven
3.
Brain Sci ; 14(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38672025

RESUMEN

The prediction of motor learning in Parkinson's disease (PD) is vastly understudied. Here, we investigated which clinical and neural factors predict better long-term gains after an intensive 6-week motor learning program to ameliorate micrographia. We computed a composite score of learning through principal component analysis, reflecting better writing accuracy on a tablet in single and dual task conditions. Three endpoints were studied-acquisition (pre- to post-training), retention (post-training to 6-week follow-up), and overall learning (acquisition plus retention). Baseline writing, clinical characteristics, as well as resting-state network segregation were used as predictors. We included 28 patients with PD (13 freezers and 15 non-freezers), with an average disease duration of 7 (±3.9) years. We found that worse baseline writing accuracy predicted larger gains for acquisition and overall learning. After correcting for baseline writing accuracy, we found female sex to predict better acquisition, and shorter disease duration to help retention. Additionally, absence of FOG, less severe motor symptoms, female sex, better unimanual dexterity, and better sensorimotor network segregation impacted overall learning positively. Importantly, three factors were retained in a multivariable model predicting overall learning, namely baseline accuracy, female sex, and sensorimotor network segregation. Besides the room to improve and female sex, sensorimotor network segregation seems to be a valuable measure to predict long-term motor learning potential in PD.

4.
Sci Rep ; 14(1): 5207, 2024 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433230

RESUMEN

Motor imagery (MI) is the mental execution of actions without overt movements that depends on the ability to imagine. We explored whether this ability could be related to the cortical activity of the brain areas involved in the MI network. To this goal, brain activity was recorded using high-density electroencephalography in nineteen healthy adults while visually imagining walking on a straight path. We extracted Event-Related Desynchronizations (ERDs) in the θ, α, and ß band, and we measured MI ability via (i) the Kinesthetic and Visual Imagery Questionnaire (KVIQ), (ii) the Vividness of Movement Imagery Questionnaire-2 (VMIQ), and (iii) the Imagery Ability (IA) score. We then used Pearson's and Spearman's coefficients to correlate MI ability scores and average ERD power (avgERD). Positive correlations were identified between VMIQ and avgERD of the middle cingulum in the ß band and with avgERD of the left insula, right precentral area, and right middle occipital region in the θ band. Stronger activation of the MI network was related to better scores of MI ability evaluations, supporting the importance of testing MI ability during MI protocols. This result will help to understand MI mechanisms and develop personalized MI treatments for patients with neurological dysfunctions.


Asunto(s)
Marcha , Gastrópodos , Adulto , Animales , Humanos , Caminata , Encéfalo , Membrana Celular , Electroencefalografía
5.
Cerebellum ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38147293

RESUMEN

Temporal prediction (TP) influences our perception and cognition. The cerebellum could mediate this multi-level ability in a context-dependent manner. We tested whether a modulation of the cerebellar neural activity, induced by transcranial Direct Current Stimulation (tDCS), changed the TP ability according to the temporal features of the context and the duration of target interval. Fifteen healthy participants received anodal, cathodal, and sham tDCS (15 min × 2 mA intensity) over the right cerebellar hemisphere during a TP task. We recorded reaction times (RTs) to a target during the task in two contextual conditions of temporal anticipation: rhythmic (i.e., interstimulus intervals (ISIs) were constant) and single-interval condition (i.e., the estimation of the timing of the target was based on the prior exposure of the train of stimuli). Two ISIs durations were explored: 600 ms (short trials) and 900 ms (long trials). Cathodal tDCS improved the performance during the TP task (shorter RTs) specifically in the rhythmic condition only for the short trials and in the single-interval condition only for the long trials. Our results suggest that the inhibition of cerebellar activity induced a different improvement in the TP ability according to the temporal features of the context. In the rhythmic context, the cerebellum could integrate the temporal estimation with the anticipatory motor responses critically for the short target interval. In the single-interval context, for the long trials, the cerebellum could play a main role in integrating representation of time interval in memory with the elapsed time providing an accurate temporal prediction.

6.
J Clin Med ; 12(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37892621

RESUMEN

Despite their relevance in neurorehabilitation, physical therapy (PT) goals and interventions are poorly described, compromising a proper understanding of PT effectiveness in everyday clinical practice. Thus, this paper aims to describe the prevalence of PT goals and interventions in people with neurological disorders, along with the participants' clinical features, setting characteristics of the clinical units involved, and PT impact on outcome measures. A multicenter longitudinal observational study involving hospitals and rehabilitation centers across Italy has been conducted. We recruited people with stroke (n = 119), multiple sclerosis (n = 48), and Parkinson's disease (n = 35) who underwent the PT sessions foreseen by the National Healthcare System. Clinical outcomes were administered before and after the intervention, and for each participant the physical therapists completed a semi-structured interview to report the goals and interventions of the PT sessions. Results showed that the most relevant PT goals were related to the ICF activities with "walking" showing the highest prevalence. The most used interventions aimed at improving walking performance, followed by those aimed at improving organ/body system functioning, while interventions targeting the cognitive-affective and educational aspects have been poorly considered. Considering PT effectiveness, 83 participants experienced a clinically significant improvement in the outcome measures assessing gait and balance functions.

7.
Neuroscience ; 526: 246-255, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37437801

RESUMEN

Music is an important tool for the induction and regulation of emotion. Although learning a sequential motor behaviour is essential to normal motor function, to our knowledge, the role of music-induced emotion on motor learning has not been explored. Our experiment aimed to determine whether listening to different emotional music could influence motor sequence learning. We focused on two sub-components of motor sequence learning: the acquisition of the order of the elements in the sequence (the "what"), and the ability to carry out the sequence, combining the elements in a single, skilled action (the "how"). Twenty subjects performed a motor sequence-learning task with a digitizing tablet in three different experimental sessions. In each session they executed the task while listening to three different musical pieces, eliciting fearful, pleasant, and neutral mood. Eight targets were presented in a pre-set order and subjects were asked to learn the sequence while moving. Music-induced pleasure had an impact on movement kinematics with onset time and peak velocity decreasing and movement time increasing more with respect to neutral music session. Declarative learning, verbal recall of the sequence order, was improved under emotional manipulation, but only for fear-condition. Results suggest that music-induced emotion can influence both sub-components of motor learning in a different way. Music-induced pleasure may have improved motor components of sequence learning by means of increased striatal dopamine availability whereas music-induced fear may facilitate the recruitment of attentional circuits, thus acting on declarative knowledge of the sequence order.

8.
Front Neurol ; 14: 1205386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448748

RESUMEN

Background: Parkinson's disease (PD) patients experience deterioration in mobility with consequent inactivity and worsened health and social status. Physical activity and physiotherapy can improve motor impairments, but several barriers dishearten PD patients to exercise regularly. Home-based approaches (e.g., via mobile apps) and remote monitoring, could help in facing this issue. Objective: This study aimed at testing the feasibility, usability and training effects of a home-based exercise program using a customized version of Parkinson Rehab® application. Methods: Twenty PD subjects participated in a two-month minimally supervised home-based training. Daily session consisted in performing PD-specific exercises plus a walking training. We measured: (i) feasibility (training adherence), usability and satisfaction (via an online survey); (ii) safety; (iii) training effects on PD severity, mobility, cognition, and mood. Evaluations were performed at: baseline, after 1-month of training, at the end of training (T2), and at 1-month follow-up (T3). Results: Eighteen out of twenty participants completed the study without important adverse events. Participants' adherence was 91% ± 11.8 for exercise and 105.9% ± 30.6 for walking training. Usability and satisfaction survey scored 70.9 ± 7.7 out of 80. Improvements in PD severity, mobility and cognition were found at T2 and maintained at follow-up. Conclusion: The home-based training was feasible, safe and seems to positively act on PD-related symptoms, mobility, and cognition in patients with mild to moderate stage of PD disease. Additionally, the results suggest that the use of a mobile app might increase the amount of daily physical activity in our study population. Remote monitoring and tailored exercise programs appear to be key elements for promoting exercise. Future studies in a large cohort of PD participants at different stages of disease are needed to confirm these findings.

9.
Res Sq ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090654

RESUMEN

Motor imagery (MI) is the mental execution of actions without overt movements that depends on the ability to imagine. We explored whether this ability could be related to the cortical activity of the brain areas involved in the MI network. To this goal, brain activity was recorded using high-density electroencephalography (hdEEG) in nineteen healthy adults while visually imagining walking on a straight path. We extracted Event-Related Desynchronizations (ERDs) in the ß band, and we measured MI ability via (i) the Kinesthetic and Visual Imagery Questionnaire (KVIQ), (ii) the Vividness of Movement Imagery Questionnaire-2 (VMIQ), and (iii) the Imagery Ability (IA) score. We then used Pearson's and Spearman's coefficients to correlate MI ability scores and average ERD power (avgERD). VMIQ was positively correlated with avgERD of frontal and cingulate areas, whereas IA SCORE was positively correlated with avgERD of left inferior frontal and superior temporal regions. Stronger activation of the MI network was related to better scores of MI ability evaluations, supporting the importance of testing MI ability during MI protocols. This result will help to understand MI mechanisms and develop personalized MI treatments for patients with neurological dysfunctions.

10.
Neurosci Biobehav Rev ; 150: 105189, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37086934

RESUMEN

The difficulty in assessing FOG and the variety of existing cues, hamper to determine which cueing modality should be applied and which FOG-related aspect should be targeted to reach personalized treatments for FOG. This systematic review aimed to highlight: i) whether cues could reduce FOG and improve FOG-related gait parameters, ii) which cues are the most effective, iii) whether medication state (ON-OFF) affects cues-related results. Thirty-three repeated measure design studies assessing cueing effectiveness were included and subdivided according to gait tasks (gait initiation, walking, turning) and to the medication state. Main results reveal that: preparatory phase of gait initiation benefit from visual and auditory cues; spatio-temporal parameters (e.g., step and stride length) are improved by visual cues during walking; turning time and step time variability are reduced by applying auditory and visual cues. Some findings on the potential benefits of cueing on FOG and FOG gait-related parameters were found. Questions remain about which are the best behavioral strategies according to FOG features and PD clinical characteristics.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Señales (Psicología) , Trastornos Neurológicos de la Marcha/etiología , Marcha , Caminata
11.
Neurol Sci ; 44(9): 3133-3140, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37072581

RESUMEN

INTRODUCTION: Freezing of gait (FOG) in Parkinson's disease (PD) is a challenging clinical symptom to assess, due to its episodic nature. A valid and reliable tool is the New FOG Questionnaire (NFOG-Q) used worldwide to measure FOG symptoms in PD. OBJECTIVE: The aim of this study was to translate, to culturally adapt, and to test the psychometric characteristics of the Italian version of the NFOG-Q (NFOG-Q-It). METHODS: The translation and cultural adaptation was based on ISPOR TCA guidelines to finalize the 9-item NFOG-Q-It. Internal consistency was assessed in 181 Italian PD native speakers who experienced FOG using Cronbach's alpha. Cross-cultural analysis was tested using the Spearman's correlation between the NFOG-Q-It and the Modified Hoehn-Yahr Scale (M-H&Y). To assess construct validity, correlations among NFOG-Q-It, Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the Falls Efficacy Scale-International (FES-I), the 6-min Walking Test (6MWT), the Mini Balance Evaluation System Test (Mini-BESTest) and the Short Physical Performance Battery (SPPB) were investigated. RESULTS: The Italian N-FOGQ had high internal consistency (Cronbach's α = 0.859). Validity analysis showed significant correlations between NFOG-Q-IT total score and M-H&Y scores (r = 0.281 p < 0.001), MDS-UPDRS (r = 0.359 p < 0.001), FES-I (r = 0.230 p = 0.002), Mini BESTest (r = -0.256 p = 0.001) and 6MWT (r = -0.166 p = 0.026). No significant correlations were found with SPPB, MOCA and MMSE. CONCLUSION: The NFOG-It is a valuable and reliable tool for assessing FOG symptoms, duration and frequency in PD subjects. Results provide the validity of NFOG-Q-It by reproducing and enlarging previous psychometric data.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/psicología , Trastornos Neurológicos de la Marcha/diagnóstico , Trastornos Neurológicos de la Marcha/etiología , Psicometría , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Encuestas y Cuestionarios , Marcha , Italia
12.
Mult Scler Relat Disord ; 69: 104424, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36473240

RESUMEN

OBJECTIVE: To assess the benefits of neurological rehabilitation and the dose-response relationship for the treatment of mobility and balance in multiple sclerosis. METHODS: We included studies investigating the effects of neurological rehabilitation on mobility and balance with the following eligibility criteria for inclusion: Population, People with Multiple Sclerosis (PwMS); Intervention, method of rehabilitation interventions; Comparison, experimental (specific balance intervention) vs control (no intervention/no specific balance intervention); Outcome, balance clinical scales; Study Design, randomised controlled trials. We conducted a random effects dose-response meta-analysis to assess linear trend estimations and a one stage linear mixed effects meta-regression for estimating dose-response curves. RESULTS: We retrieved 196 studies from a list of 5020 for full text review and 71 studies (n subjects=3306) were included. One study was a cross-over and 70 studies were randomized controlled trials and the mean sample size per study was 46.5 ± 28.6 (mean±SD) with a mean age of 48.3 ± 7.8years, disease duration of 11.6 ± 6.1years, and EDSS of 4.4 ± 1.4points. Twenty-nine studies (40.8%) had the balance outcome as the primary outcome, while 42 studies (59.1%) had balance as secondary outcome or did not specify primary and secondary outcomes. Thirty-three trials (46.5%) had no active intervention as comparator and 38 trials (53.5%) had an active control group. Individual level data from 20 studies (n subjects=1016) were analyzed showing a medium pooled effect size for balance interventions (SMD=0.41; 95% CIs 0.22 to 0.59). Moreover, we analyzed 14 studies (n subjects=696) having balance as primary outcome and BBS as primary endpoint yielding a mean difference of 3.58 points (95% CIs 1.79 to 5.38, p<0.0001). Finally, we performed meta regression of the 20 studies showing an association between better outcome, log of intensity defined as minutes per session (ß=1.26; SEß=0.51; p = 0.02) and task-oriented intervention (ß=0.38; SEß=0.17; p = 0.05). CONCLUSION: Our analyses provide level 1 evidence on the effect of balance intervention to improve mobility. Furthermore, according to principles of neurological rehabilitation, high intensity and task-specific interventions are associated with better treatment outcomes.


Asunto(s)
Esclerosis Múltiple , Rehabilitación Neurológica , Humanos , Adulto , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Terapia por Ejercicio , Ensayos Clínicos Controlados Aleatorios como Asunto
13.
Front Hum Neurosci ; 16: 862013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277054

RESUMEN

We recently demonstrated, by means of short latency afferent inhibition (SAI), that before an imagined movement, during the reaction time (RT), SAI decreases only in the movement-related muscle (sensorimotor modulation) and that a correlation exists between sensorimotor modulation and motor imagery (MI) ability. Excitatory anodal transcranial direct current stimulation (a-tDCS) on M1 could enhance the MI outcome; however, mechanisms of action are not completely known. Here, we assessed if a-tDCS on M1 prior to an MI task could affect sensorimotor modulation. Participants imagined abducting the index or little finger in response to an acoustic signal. SAI was evaluated from the first dorsal interosseus after the "go" signal, before the expected electromyographic (EMG) activity. Participants received 20-min 1.5 mA a-tDCS or sham-tDCS on M1 on two different days, in random order. Results showed that a-tDCS on M1 increases the sensorimotor modulation consisting of a weakening of SAI after the Go signal with respect to sham-tDCS, in the movement-related muscle right before the beginning of MI. These results suggest that a-tDCS on M1 further potentiate those circuits responsible for sensorimotor modulation in the RT phase of MI. Increased sensorimotor modulation during MI may be one of the mechanisms involved in MI improvement after a-tDCS over M1.

14.
Sci Rep ; 12(1): 4314, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279682

RESUMEN

The aim of this study was to investigate differences between usual and complex gait motor imagery (MI) task in healthy subjects using high-density electroencephalography (hdEEG) with a MI protocol. We characterized the spatial distribution of α- and ß-bands oscillations extracted from hdEEG signals recorded during MI of usual walking (UW) and walking by avoiding an obstacle (Dual-Task, DT). We applied a source localization algorithm to brain regions selected from a large cortical-subcortical network, and then we analyzed α and ß bands Event-Related Desynchronizations (ERDs). Nineteen healthy subjects visually imagined walking on a path with (DT) and without (UW) obstacles. Results showed in both gait MI tasks, α- and ß-band ERDs in a large cortical-subcortical network encompassing mostly frontal and parietal regions. In most of the regions, we found α- and ß-band ERDs in the DT compared with the UW condition. Finally, in the ß band, significant correlations emerged between ERDs and scores in imagery ability tests. Overall we detected MI gait-related α- and ß-band oscillations in cortical and subcortical areas and significant differences between UW and DT MI conditions. A better understanding of gait neural correlates may lead to a better knowledge of pathophysiology of gait disturbances in neurological diseases.


Asunto(s)
Marcha , Imágenes en Psicoterapia , Encéfalo/fisiología , Electroencefalografía , Marcha/fisiología , Humanos , Imaginación/fisiología , Caminata/fisiología
15.
Front Neurol ; 12: 583593, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995237

RESUMEN

Background: The pathophysiological mechanisms underlying freezing of gait (FOG) are poorly defined. MRI studies in FOG showed a distinct pattern of cortical atrophy and decreased functional connectivity (FC) within motor and cognitive networks. Furthermore, reduced rs-FC within midbrain, frontal, and temporal areas has been also described. This study investigated the patterns of whole-brain FC alterations within midbrain inter-connected regions in PD-FOG patients, and whether these patterns are linked to midbrain structural damage using a multi-modal imaging approach, combing structural and functional imaging techniques. Methods: Thirty three PD patients (16 PD-FOG, 17 PD noFOG), and 21 sex- and age-matched healthy controls (HCs) were prospectively enrolled. All subjects underwent MRI scan at 1.5T, whereas only PD patients underwent clinical and cognitive assessment. Grey matter (GM) integrity was measured using voxel-based morphometry (VBM). VBM findings served as basis to localize midbrain damage, and were further used as a seed region for investigating whole-brain FC alterations using rs-fMRI. Results: In rs-fMRI, patients with PD and FOG demonstrated significant decrease of midbrain-cortical FC levels in the R PCG, right postcentral, and supramarginal gyri compared to controls and the middle cingulate compared to noFOG group. Based on the regression analysis, MOCA, UPDRS-III total score, and FOG severity scores were associated with FC levels in several frontal, parietal and temporal regions. Discussion: The present results suggest that midbrain structural damage as well as decreased FC within the brainstem functional network might contribute to FOG occurrence in PD patients.

16.
Front Aging Neurosci ; 13: 753381, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069171

RESUMEN

Treadmill training with virtual reality (TT + VR) has been shown to improve gait performance and to reduce fall risk in Parkinson's disease (PD). However, there is no consensus on the optimal training duration. This study is a sub-study of the V-TIME randomized clinical trial (NCT01732653). In this study, we explored the effect of the duration of training based on the motor-cognitive interaction on motor and cognitive performance and on fall risk in subjects with PD. Patients in Hoehn and Yahr stages II-III, aged between 40 and 70 years, were included. In total, 96 patients with PD were assigned to 6 or 12 weeks of TT + VR intervention, and 77 patients completed the full protocol. Outcome measures for gait and cognitive performance were assessed at baseline, immediately after training, and at 1- and 6-month follow-up. The incident rate of falls in the 6-month pre-intervention was compared with that in the 6-month post-intervention. Dual-task gait performance (gait speed, gait speed variability and stride length under cognitive dual task and obstacle negotiation, and the leading foot clearance in obstacle negotiation) improved similarly in both groups with gains sustained at 6-month follow-up. A higher decrease in fall rate and fear of falling were observed in participants assigned to the 12-week intervention than the 6-week intervention. Improvements in cognitive functions (i.e., executive functions, visuospatial ability, and attention) were seen only in participants enrolled in 12-week training up to 1-month follow-up but vanished at the 6-month evaluation. Our results suggest that a longer TT + VR training leads to greater improvements in cognitive functions especially those directly addressed by the virtual environment.

17.
Neural Plast ; 2020: 8869201, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33456457

RESUMEN

Background: Action observation (AO) relies on the mirror neuron system (MNS) and has been proposed as a rehabilitation tool in Parkinson's disease (PD), in particular for gait disorder such as freezing of gait (FOG). In this study, we aimed to explore the brain functional correlates of the observation of human gait in PD patients with (FOG+) and without (FOG-) FOG and to investigate a possible relationship between AO-induced brain activation and gait performance. Methods: Fifty-four participants were enrolled in the study (15 PD FOG+; 18 PD FOG-; 21 healthy subjects (HS)) which consisted of two tasks in two separate days: (i) gait assessment and (ii) task-fMRI during AO of gait. Differences between patients with PD (FOG+ and FOG-) and HS were assessed at the level of behavioral and functional analysis. Results: Gait parameters, including gait velocity, stride length, and their coefficients of variability (CV), were different in PD patients compared to HS, whereas gait performance was similar between FOG+ and FOG-. The PD group, compared to HS, presented reduced functional activation in the frontal, cingulum, and parietooccipital regions. Reduced activity was more pronounced in the FOG+ group, compared to both HS and FOG- groups. Gait variability positively correlated with precuneus neural activity in the FOG+ group. Discussion. Patients with PD present a reduced functional activity during AO of gait, especially if FOG+. A baseline knowledge of the neural correlates of AO of gait in the clinical routine "on" status would help for the design of future AO rehabilitative interventions.


Asunto(s)
Trastornos Neurológicos de la Marcha/diagnóstico por imagen , Trastornos Neurológicos de la Marcha/fisiopatología , Marcha/fisiología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Prueba de Paso/métodos , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Neuronas Espejo/fisiología , Estudios Prospectivos , Velocidad al Caminar/fisiología
18.
Mov Disord ; 35(4): 523-536, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31799734

RESUMEN

Freezing of gait is considered one of the most disabling gait disorders in patients with PD. An effective treatment for freezing of gait is missing, thus current management requires a multidisciplinary approach. Among treatment options, physiotherapy is acknowledged to be crucial; however, a systematic review that demonstrates its efficacy is missing. This review aims at examining the short- and long-term effects of physiotherapy in improving freezing of gait in PD patients. Five electronic databases were searched for English-language full-text articles, and only randomized controlled trials were considered. The freezing of gait questionnaire was selected as the primary outcome measure because it is the only validated measure used to evaluate the severity and impact of freezing of gait on patients' daily life. From 1,130 trials, 19 relevant studies, including 913 patients, were selected. The included studies varied for sample size, methodology, and type of intervention. None of the studies had a low risk of bias, but the majority of randomized control trials presented a low risk for at least 6 of 13 biases. Our findings provide evidence for short-term effectiveness of physiotherapy in improving freezing of gait (physiotherapy vs. no treatment: effect size = -0.28 [-0.45, -0.11], P = 0.001; physiotherapy vs. control: effect size = 0.43 [-0.65, -0.21], P < 0.0001), particularly when tailored interventions are applied. These results seem to be maintained at the follow-up examinations (effect size = -0.52 [-0.78, -0.26]; P = 0.001). Promising findings on the potential benefits of physiotherapy in improving freezing of gait were found, although further randomized control trial studies are still needed. Questions remain on the type and duration of intervention that best fits for treating freezing of gait symptom in PD. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Marcha , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Modalidades de Fisioterapia
20.
Parkinsonism Relat Disord ; 66: 45-50, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31279636

RESUMEN

INTRODUCTION: Perception of verticality is fundamental for postural stability that is often impaired in patients with Parkinson's disease (PD). Haptic perception of verticality has not been fully investigated in PD. The aim of the study was to assess subjective haptic vertical (SHV) in PD patients in relation to postural and balance impairments. METHODS: 39 PD patients (mean age 72.87 ±â€¯5.78) and 28 gender and age-matched healthy elderly (ELD, mean age 69.16 ±â€¯13.89) were enrolled. The Pull test and the Activities-specific Balance Confidence (ABC) were used for evaluating balance performance, whereas measurement of posture was performed using the Physical Analyzer System®. For evaluating SHV, participants were instructed to provide their subjective vertical by manipulating with two hands a road while standing with their eyes closed. RESULTS: SHV data showed that PD subjects had a greater deviation from the objective vertical than controls (p < 0.001). Significant differences in balance performance (ABC and Pull test) and postural alignment were found between PD and ELD. Only in PD participants, SHV deviations significantly correlated with the lateral inclination of the trunk (r = 0.618, p < 0.001), pull test (r = 0.519; p = 0.001) and ABC (r = 0.471, p = 0.002) scores. CONCLUSIONS: The perception of verticality, driven by multimodal sensory integration, is defective in PD subjects. Deficits in SHV correlated with postural alignment and balance performances, independently from age, disease severity or cognitive decline. Our findings support that PD pathology is associated with a decline in haptic perception suggesting that perception per se might have a causal role in postural and balance deficits.


Asunto(s)
Enfermedad de Parkinson/fisiopatología , Equilibrio Postural/fisiología , Trastornos de la Sensación/fisiopatología , Percepción Espacial/fisiología , Percepción Visual/fisiología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...