Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Braz J Microbiol ; 55(1): 441-445, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37996692

RESUMEN

Environmental surface surveillance is a valuable tool for detecting and controlling infectious diseases. During the COVID-19 pandemic, concerns have been raised regarding the potential for indirect transmission of SARS-CoV-2 via contaminated surfaces. However, few studies have evaluated environmental contamination in non-clinical settings during outbreaks. We conducted a study in a school community during a major outbreak, collecting 35 surface samples from high-traffic areas and testing them for SARS-CoV-2 RNA using RT-qPCR. Our results showed that 31.4% of samples were positive, including high-touch surfaces such as drinking fountains and washbasins. These findings emphasize the importance of environmental monitoring to identify and address specific areas for attention, and implementing such strategies can help prevent the indirect transmission of COVID-19 in various settings.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias/prevención & control , ARN Viral/genética , Brotes de Enfermedades , Monitoreo del Ambiente
2.
Res Microbiol ; 174(8): 104116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37573924

RESUMEN

Agaricus subrufescens, also known as the "sun mushroom," has significant nutritional and medicinal value. However, its short shelf life due to the browning process results in post-harvest losses unless it's quickly dehydrated. This restricts its availability to consumers in the form of capsules. A genome sequence of A. subrufescens may lead to new cultivation alternatives or the application of gene editing strategies to delay the browning process. We assembled a chromosome-scale genome using a hybrid approach combining Illumina and Nanopore sequencing. The genome was assembled into 13 chromosomes and 31 unplaced scaffolds, totaling 44.5 Mb with 96.5% completeness and 47.24% GC content. 14,332 protein-coding genes were identified, with 64.6% of the genome covered by genes and 23.41% transposable elements. The mitogenome was circularized and encoded fourteen typical mitochondrial genes. Four polyphenol oxidase (PPO) genes and the Mating-type locus were identified. Phylogenomic analysis supports the placement of A. subrufescens in the Agaricomycetes clade. This is the first available genome sequence of a strain of the "sun mushroom." Results are available through a Genome Browser (https://plantgenomics.ncc.unesp.br/gen.php?id=Asub) and can support further fungal biological and genomic studies.


Asunto(s)
Agaricus , Agaricus/genética , Genómica , Cromosomas , Biotecnología , Genoma Fúngico
3.
Environ Sci Pollut Res Int ; 30(27): 70143-70158, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37147541

RESUMEN

Over the last few decades, agrochemicals have been partially associated with a global reduction in bees' population. Toxicological assessment is therefore crucial for understanding the overall agrochemical risks to stingless bees. Therefore, the lethal and sublethal effects of agrochemicals commonly used in crops (copper sulfate, glyphosate, and spinosad) on the behavior and gut microbiota of the stingless bee, Partamona helleri, were assessed using chronic exposure during the larval stage. When used at the field-recommended rates, both copper sulfate (200 µg of active ingredient/bee; a.i µg bee-1) and spinosad (8.16 a.i µg bee-1) caused a decrease in bee survival, while glyphosate (148 a.i µg bee-1) did not show any significant effects. No significant adverse effects on bee development were observed in any treatment with CuSO4 or glyphosate, but spinosad (0.08 or 0.03 a.i µg bee -1) increased the number of deformed bees and reduced their body mass. Agrochemicals changed the behavior of bees and composition of the gut microbiota of adult bees, and metals such as copper accumulated in the bees' bodies. The response of bees to agrochemicals depends on the class or dose of the ingested compound. In vitro rearing of stingless bees' larvae is a useful tool to elucidate the sublethal effects of agrochemicals.


Asunto(s)
Agroquímicos , Microbioma Gastrointestinal , Abejas , Animales , Agroquímicos/farmacología , Sulfato de Cobre , Larva , Conducta Animal
4.
Curr Opin Biotechnol ; 81: 102918, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36972633

RESUMEN

The Antarctic continent is undergoing a rapid warming, affecting microbial communities throughout its ecosystems. This continent is a natural laboratory for studying the effect of climate change, however, assessing the microbial communities' responses to environmental changes is challenging from a methodological point of view. We suggest novel experimental designs, including multivariable assessments that apply multiomics methods in combination with continuous environmental data recording and new warming simulation systems. Moreover, we propose that climate change studies in Antarctica should consider three main objectives, including descriptive studies, short-term temporary adaptation studies, and long-term adaptive evolution studies. This will help us to understand and manage the effects of climate change on the Earth.


Asunto(s)
Cambio Climático , Microbiota , Ecosistema , Regiones Antárticas
5.
Microbiol Res ; 265: 127178, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36113308

RESUMEN

Amazonian forest conversion into agricultural and livestock areas is considered one of the activities that contribute most to the emission of greenhouse gases, including methane. Biogenic methane production is mainly performed by methanogenic Archaea, which underscores the importance of understanding the drivers shaping microbial communities involved in the methane cycling and changes in methane metabolism. Here, we aimed to investigate the composition and structure of bacterial and archaeal communities in tropical soils in response to land-use changes, emphasizing the methanogenic communities. We collected soil samples from primary forest, pasture, and secondary forest of the Amazonian region and used a strategy based on the enrichment of the methanogenic community with three different methanogenic substrates followed by measurements of methane emission, quantification of mcrA gene copies by qPCR, and total 16 S rRNA gene sequencing (metataxonomics). We observed variations in the structure of bacterial and archaeal communities of soils under different uses. The richness of methanogenic communities was higher in pasture than forest soils and this richness remained during the incubation period, and as a consequence, the enrichment induced earlier methane emission in pastures-derived samples. Furthermore, pastures enrichments exhibited methanogenic archaea networks more complex than primary and secondary forests. In conclusion, pastures harbor a richer and more responsive methanogenic community than forest samples, suggesting that conversion of forest areas to pasture may boost methane emission.


Asunto(s)
Euryarchaeota , Gases de Efecto Invernadero , Archaea , Bacterias , Brasil , Euryarchaeota/genética , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/metabolismo , Metano , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo
6.
Braz J Microbiol ; 53(4): 2051-2063, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36083529

RESUMEN

Bacillus subtilis is a versatile bacterial species able to produce surfactin, a lipopeptide biosurfactant. We carried out the phylogenomic characterization and pangenomic analyses using available B. subtilis complete genomes. Also, we report the whole genome of the biosurfactant-producing B. subtilis strain RI4914 that was isolated from effluent water from an oil exploration field. We applied a hybrid sequencing approach using both long- and short-read sequencing technologies to generate a highly accurate, single-chromosome genome. The pangenomics analysis of 153 complete genomes classified as B. subtilis retrieved from the NCBI shows an open pangenome composed of 28,511 accessory genes, which agrees with the high genetic plasticity of the species. Also, this analysis suggests that surfactin production is a common trait shared by members of this species since the srfA operon is highly conserved among the B. subtilis strains found in most of the assemblies available. Finally, increased surfactin production corroborates the higher srfAA gene expression in B. subtilis strain RI4914.


Asunto(s)
Bacillus subtilis , Péptidos Cíclicos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Filogenia , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Lipopéptidos , Operón , Proteínas Bacterianas/metabolismo
7.
Food Res Int ; 159: 111605, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940800

RESUMEN

Altitude changes the coffee fruits and beans composition before and after harvesting. We aimed to evaluate the effect of altitude on the microbial community structure associated with pulped coffee fruits under self-induced anaerobic fermentation (SIAF) and their acids, volatiles, and antioxidants biochemical profiles. The most abundant bacterial genera were Gluconobacter (800 m), Weissella (1,000 m), and Leclercia (1,200 and 1,400 m). Yeasts dominated the pulped natural fermentations within the fungal species, containing high abundances of Cystofilobasidium infirmominiatum, Wickerhamomyces anomalus, and Meyerozyma caribbica. Citric, alcohols, and caffeine were the most dominant compounds in SIAF among acids, volatiles, chemical groups, and antioxidants. High altitude coffees favor alcohols, aldehydes, and esters groups, while low altitude coffees favor phenols.


Asunto(s)
Café , Microbiota , Alcoholes , Altitud , Antioxidantes , Café/química
8.
Food Res Int ; 157: 111257, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761569

RESUMEN

The objective of this study was to apply for the first time sugary kefir to produce a new isotonic with low sodium. Additionally, the microbial community profile of grains and fermented kefir was evaluated through metataxonomics. The kefir grains were inoculated into filtered water containing 40 g L-1 sugar at 25 °C for 48 h. Grains and beverage samples were collected at 0, 24, and 48 h for DNA extraction. The grains were separated, and the beverage was used to prepare the isotonic. The isotonic consisted of kefir (85% v/v), pasteurized juice (15% v/v), sodium citrate (0.2 g L-1), sodium chloride (0.427 g L-1), maltodextrin (22 g L-1) and citric acid (0.7 g L-1). The physicochemical and microbiological parameters were performed on days 0, 7, 15, and 30. All isotonic obtained presented sodium content below the commercial control. The presence of lactic acid bacteria and yeasts in all periods evaluated demonstrated the viability of isotonic kefir. Through metataxonomy, the genus Ethanoligenens was described as dominant for the first time in sugary kefir. Furthermore, the microbial diversity in the beverage was higher than that observed in the grains. This study provided a new low sodium isotonic based on sugary kefir for the first time.


Asunto(s)
Kéfir , Lactobacillales , Bebidas/microbiología , Fermentación , Kéfir/microbiología , Sodio , Azúcares
9.
Front Microbiol ; 12: 668644, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177846

RESUMEN

The bacterial genus Sodalis is represented by insect endosymbionts as well as free-living species. While the former have been studied frequently, the distribution of the latter is not yet clear. Here, we present a description of a free-living strain, Sodalis ligni sp. nov., originating from decomposing deadwood. The favored occurrence of S. ligni in deadwood is confirmed by both 16S rRNA gene distribution and metagenome data. Pangenome analysis of available Sodalis genomes shows at least three groups within the Sodalis genus: deadwood-associated strains, tsetse fly endosymbionts and endosymbionts of other insects. This differentiation is consistent in terms of the gene frequency level, genome similarity and carbohydrate-active enzyme composition of the genomes. Deadwood-associated strains contain genes for active decomposition of biopolymers of plant and fungal origin and can utilize more diverse carbon sources than their symbiotic relatives. Deadwood-associated strains, but not other Sodalis strains, have the genetic potential to fix N2, and the corresponding genes are expressed in deadwood. Nitrogenase genes are located within the genomes of Sodalis, including S. ligni, at multiple loci represented by more gene variants. We show decomposing wood to be a previously undescribed habitat of the genus Sodalis that appears to show striking ecological divergence.

10.
Front Microbiol ; 12: 671395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093490

RESUMEN

Coffee harvested in the Caparaó region (Minas Gerais, Brazil) is associated with high-quality coffee beans resulting in high-quality beverages. We characterize, microbiologically and chemically, fermented coffees from different altitudes through target NGS, chromatography, and conventional chemical assays. The genera Gluconobacter and Weissella were dominant in coffee's fruits from altitudes 800 and 1,000 m. Among the Eukaryotic community, yeasts were the most dominant in all altitudes. The most dominant fungal genus was Cystofilobasidium, which inhabits cold environments and resists low temperatures. The content of acetic acid was higher at altitudes 1,200 and 1,400 m. Lactic acid and the genus Leuconostoc (Pearson: 0.93) were positively correlated. The relative concentration of volatile alcohols, especially of 2-heptanol, was high at all altitudes. Bacteria population was higher in coffees from 800 m, while at 1,000 m, fungi richness was favored. The altitude is an important variable that caused shifts in the microbial community and biochemical compounds content, even in coffees belonging to the same variety and cultivated in the same region under SIAF (self-induced anaerobic fermentation) conditions. Coffee from lower altitudes has higher volatile alcohols content, while high altitudes have esters, aldehydes, and total phenolics contents.

11.
Microorganisms ; 9(5)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063014

RESUMEN

Second-generation biofuel production is in high demand, but lignocellulosic biomass' complexity impairs its use due to the vast diversity of enzymes necessary to execute the complete saccharification. In nature, lignocellulose can be rapidly deconstructed due to the division of biochemical labor effectuated in bacterial communities. Here, we analyzed the lignocellulolytic potential of a bacterial consortium obtained from soil and dry straw leftover from a sugarcane milling plant. This consortium was cultivated for 20 weeks in aerobic conditions using sugarcane bagasse as a sole carbon source. Scanning electron microscopy and chemical analyses registered modification of the sugarcane fiber's appearance and biochemical composition, indicating that this consortium can deconstruct cellulose and hemicellulose but no lignin. A total of 52 metagenome-assembled genomes from eight bacterial classes (Actinobacteria, Alphaproteobacteria, Bacilli, Bacteroidia, Cytophagia, Gammaproteobacteria, Oligoflexia, and Thermoleophilia) were recovered from the consortium, in which ~46% of species showed no relevant modification in their abundance during the 20 weeks of cultivation, suggesting a mostly stable consortium. Their CAZymes repertoire indicated that many of the most abundant species are known to deconstruct lignin (e.g., Chryseobacterium) and carry sequences related to hemicellulose and cellulose deconstruction (e.g., Chitinophaga, Niastella, Niabella, and Siphonobacter). Taken together, our results unraveled the bacterial diversity, enzymatic potential, and effectiveness of this lignocellulose-decomposing bacterial consortium.

12.
Braz J Microbiol ; 52(3): 1397-1404, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33852152

RESUMEN

Planctomycetes are bacteria found in several environments, such as mangroves. In the coastline of the State of Sao Paulo (Brazilian Southeast), mangroves occur in different stages of environmental contamination, promoted by the proximity to the city and industrial activities. One of these mangroves (located in the city of Bertioga) is characterized by the high impact due to past petroleum and ongoing urban contamination. We isolated five bacteria affiliated to Planctomycetes from this mangrove and further subjected them to phenotypical and genetic analysis. The tolerance for salinity was demonstrated by the cultivation under distinct concentrations of NaCl. The ability of this bacterium to use diverse carbon sources was revealed by the use of 30 C-sources from a total of 31 tests. We found the isolate Rhodopirellula sp. MGV very closely affiliated to species of the genus Rhodopirellula, harboring a genome with 7.16 Mbp and 55.3% of GC. The annotation of the 77 contigs resulted in 6.284 CDS, with a remarkable occurrence of sequences associated with aromatic carbon metabolism. In conclusion, we present the isolation and characterization of a Planctomycetes from mangroves, suggesting its participation in the degradation of hydrocarbons present in the contaminated mangroves studied.


Asunto(s)
Hidrocarburos , Planctomycetales , Contaminación Química del Agua , Bacterias , Brasil , Carbono , Genómica , Hidrocarburos/metabolismo , Filogenia , Planctomycetales/genética , Planctomycetales/metabolismo , Humedales
13.
Trends Microbiol ; 29(4): 279-282, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33551270

RESUMEN

Despite several efforts to unravel the microbial diversity of soil, most microbes are still unknown. A recent large-scale effort based on genome-resolved metagenomics by Nayfach et al. has demonstrated how this approach can expand our understanding of novel bacterial lineages, including those from soils. Genomic catalogs of soil microbiomes are now enabling a deeper investigation of the evolutionary and functional role of high-complex soil microbiomes, promoting new knowledge from the reuse and sharing of multi-omics data.


Asunto(s)
Bacterias/genética , Variación Genética , Genoma Bacteriano , Metagenómica/métodos , Microbiología del Suelo
14.
Microb Ecol ; 82(1): 100-103, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32200418

RESUMEN

Terrestrial plants establish symbiosis with arbuscular mycorrhizal fungi (AMF) to exchange water and nutrients. However, the extent to which soil biodiversity influences such association remains still unclear. Here, we manipulated the soil microbial diversity using a "dilution-to-extinction" approach in a controlled pot microcosm system and quantified the root length colonization of maize plants by the AMF Rhizophagus clarus. The experiment was performed by manipulating the soil microbiome within a native and foreign soil having distinct physicochemical properties. Overall, our data revealed significant positive correlations between the soil microbial diversity and AMF colonization. Most importantly, this finding opposes the diversity-invasibility hypothesis and highlights for a potential overall helper effect of the soil biodiversity on plant-AMF symbiosis.


Asunto(s)
Micorrizas , Hongos/genética , Raíces de Plantas , Suelo , Microbiología del Suelo
15.
Microb Ecol ; 81(2): 535-539, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32862246

RESUMEN

Sequencing 16S rRNA gene amplicons is the gold standard to uncover the composition of prokaryotic communities. The presence of multiple copies of this gene makes the community abundance data distorted and gene copy normalization (GCN) necessary for correction. Even though GCN of 16S data provided a picture closer to the metagenome before, it should also be compared with communities of known composition due to the fact that library preparation is prone to methodological biases. Here, we process 16S rRNA gene amplicon data from eleven simple mock communities with DADA2 and estimate the impact of GCN. In all cases, the mock community composition derived from the 16S sequencing differs from those expected, and GCN fails to improve the classification for most of the analysed communities. Our approach provides empirical evidence that GCN does not improve the 16S target sequencing analyses in real scenarios. We therefore question the use of GCN for metataxonomic surveys until a more comprehensive catalogue of copy numbers becomes available.


Asunto(s)
Metagenómica/normas , Microbiota/genética , ARN Ribosómico 16S/genética , Dosificación de Gen , Biblioteca de Genes , Metagenoma/genética
16.
Environ Microbiol Rep ; 12(6): 651-655, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32815317

RESUMEN

Soil microbiome is one of the most heterogeneous biological systems. State-of-the-art molecular approaches such as those based on single-amplified genomes (SAGs) and metagenome assembled-genomes (MAGs) are now improving our capacity for disentailing soil microbial-mediated processes. Here, we analysed publicly available datasets of soil microbial genomes and MAG's reconstructed from the Amazon's tropical soil (primary forest and pasture) and active layer of permafrost, aiming to evaluate their genome size. Our results suggest that the Candidate Phyla Radiation (CPR)/Patescibacteria phyla have genomes with an average size fourfold smaller than the mean identified in the RefSoil database, which lacks any representative of this phylum. Also, by analysing the potential metabolism of 888 soil microbial genomes, we show that CPR/Patescibacteria representatives share similar functional profiles, but different from other microbial phyla and are frequently neglected in the soil microbial surveys. Finally, we argue that the use of MAGs may be a better choice over SAGs to expand the soil microbial databases, like RefSoil.


Asunto(s)
Bacterias/genética , Genoma Bacteriano , Microbiología del Suelo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bases de Datos Genéticas , Tamaño del Genoma , Metagenoma , Microbiota , Filogenia
17.
Sci Total Environ ; 728: 138885, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32361355

RESUMEN

The interactions between soil properties, microorganisms, plant species and climate affect cadmium (Cd) availability in tropical soils. In this study, we investigated the effects of simulated summer and winter conditions on Cd fractionation and bacterial communities in Oxisols and on growth of two high biomass production-grasses (Brachiaria decumbens and Panicum maximum) that were evaluated for their Cd phytoextraction potential. We also assessed how these interactions could influence the availability of Cd and its possible phytoextraction by these grasses. The Cd fraction bound to carbonates was higher in the winter conditions, while Cd bound to Fe- and Mn oxides was higher in the summer conditions, which resulted in a higher Cd availability in winter compared to summer conditions. B. decumbens and P. maximum took up more Cd when grown in the winter conditions, but their biomasses were not affected by the higher Cd uptake. The occurrence and relative abundance of bacterial taxa in the bare soil differed from the soils cultivated with grasses, where the Gammaproteobacteria predominated. However, no positive correlations were observed between the rhizosphere bacterial community in the cultivated soils and Cd availability, irrespective of the season conditions.


Asunto(s)
Brachiaria , Panicum , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Disponibilidad Biológica , Cadmio/análisis , Estaciones del Año , Suelo
18.
PeerJ Comput Sci ; 6: e289, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33816940

RESUMEN

BACKGROUND: In the last twenty years, new methodologies have made possible the gathering of large amounts of data concerning the genetic information and metabolic functions associated to the human gut microbiome. In spite of that, processing all this data available might not be the simplest of tasks, which could result in an excess of information awaiting proper annotation. This assessment intended on evaluating how well respected databases could describe a mock human gut microbiome. METHODS: In this work, we critically evaluate the output of the cross-reference between the Uniprot Knowledge Base (Uniprot KB) and the Kyoto Encyclopedia of Genes and Genomes Orthologs (KEGG Orthologs) or the evolutionary genealogy of genes: Non-supervised Orthologous groups (EggNOG) databases regarding a list of species that were previously found in the human gut microbiome. RESULTS: From a list which contemplates 131 species and 52 genera, 53 species and 40 genera had corresponding entries for KEGG Database and 82 species and 47 genera had corresponding entries for EggNOG Database. Moreover, we present the KEGG Orthologs (KOs) and EggNOG Orthologs (NOGs) entries associated to the search as their distribution over species and genera and lists of functions that appeared in many species or genera, the "core" functions of the human gut microbiome. We also present the relative abundance of KOs and NOGs throughout phyla and genera. Lastly, we expose a variance found between searches with different arguments on the database entries. Inferring functionality based on cross-referencing UniProt and KEGG or EggNOG can be lackluster due to the low number of annotated species in Uniprot and due to the lower number of functions affiliated to the majority of these species. Additionally, the EggNOG database showed greater performance for a cross-search with Uniprot about a mock human gut microbiome. Notwithstanding, efforts targeting cultivation, single-cell sequencing or the reconstruction of high-quality metagenome-assembled genomes (MAG) and their annotation are needed to allow the use of these databases for inferring functionality in human gut microbiome studies.

19.
Mol Ecol Resour ; 20(2): 415-428, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31698527

RESUMEN

The data used for profiling microbial communities is usually sparse with some microbes having high abundance in a few samples and being nearly absent in others. However, current bioinformatics tools able to deal with this sparsity are lacking. pime (Prevalence Interval for Microbiome Evaluation) was designed to remove those taxa that may be high in relative abundance in just a few samples but have a low prevalence overall. The reliability and robustness of pime were compared against existing methods and tested using 16S rRNA independent data sets. pime filters microbial taxa not shared in a per treatment prevalence interval started at 5% prevalence with increasing increments of 5% at each filtering step. For each prevalence interval, hundreds of decision trees were calculated to predict the likelihood of detecting differences in treatments. The best prevalence-filtered data set was user-selected by choosing the prevalence interval that kept a large portion of the 16S rRNA sequences in the data set while also showing the lowest error rate. To obtain the likelihood of introducing type I error while building prevalence-filtered data sets, an error detection step based was also included. A pime reanalysis of published data sets uncovered other expected microbial associations than previously reported, which may be masked when only relative abundance was considered.


Asunto(s)
Bacterias/aislamiento & purificación , Biología Computacional/métodos , Microbiota , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética
20.
Microbiol Resour Announc ; 8(36)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488540

RESUMEN

Here, we report the draft genomic sequences and annotation of Streptomyces misionensis ACT66 and Streptomyces albidoflavus ACT77, which are two bacteria with potential application for phytopathogen biocontrol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...