Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1861(12 Pt A): 2029-2037, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27751891

RESUMEN

Stearoyl-CoA desaturase 1 (SCD1) has recently been shown to be a critical control point in the regulation of cardiac metabolism and function. Peroxisome proliferator-activated receptor α (PPARα) is an important regulator of myocardial fatty acid uptake and utilization. The present study used SCD1 and PPARα double knockout (SCD1-/-/PPARα-/-) mice to test the hypothesis that PPARα is involved in metabolic changes in the heart that are caused by SCD1 downregulation/inhibition. SCD1 deficiency decreased the intracellular content of free fatty acids, triglycerides, and ceramide in the heart of SCD1-/- and SCD1-/-/PPARα-/- mice. SCD1 ablation in PPARα-/- mice decreased diacylglycerol content in cardiomyocytes. These results indicate that the reduction of fat accumulation in the heart associated with SCD1 deficiency occurs independently of the PPARα pathway. To elucidate the mechanism of the observed changes, we treated HL-1 cardiomyocytes with the SCD1 inhibitor A939572 and/or PPARα inhibitor GW6471. SCD1 inhibition decreased the level of lipogenic proteins and increased lipolysis, reflected by a decrease in the content of adipose triglyceride lipase inhibitor G0S2 and a decrease in the ratio of phosphorylated hormone-sensitive lipase (HSL) at Ser565 to HSL (pHSL[Ser565]/HSL). PPARα inhibition alone did not affect the aforementioned protein levels. Finally, PPARα inhibition decreased the phosphorylation level of 5'-adenosine monophosphate-activated protein kinase, indicating lower mitochondrial fatty acid oxidation. In summary, SCD1 ablation/inhibition decreased cardiac lipid content independently of the action of PPARα by reducing lipogenesis and activating lipolysis. The present data suggest that SCD1 is an important component in maintaining proper cardiac lipid metabolism.


Asunto(s)
Corazón/fisiología , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Lipólisis/fisiología , PPAR gamma/metabolismo , Estearoil-CoA Desaturasa/deficiencia , Adenosina Monofosfato/metabolismo , Animales , Línea Celular , Ceramidas/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Lipogénesis/fisiología , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Fosforilación/fisiología , Triglicéridos/metabolismo
2.
Postepy Hig Med Dosw (Online) ; 70(0): 644-53, 2016 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-27333934

RESUMEN

The heart has a limited capacity for lipogenesis and de novo lipid synthesis. However, expression of lipogenic genes in cardiomyocytes is unexpectedly high. Recent studies showed that lipogenic genes are important factors regulating cardiac metabolism and function. Long chain fatty acids are a major source of ATP required for proper heart function, and under aerobic conditions, the heart derives 60-90% of the energy necessary for contractile function from fatty acid oxidation. On the other hand, cardiac lipid over-accumulation (e.g. ceramides, diacylglycerols) leads to heart dysfunction. Downregulation of the lipogenic genes' expression (e.g. sterol regulatory element binding protein 1, stearoyl-CoA desaturase, acetyl-CoA kwacarboxylase) decreased heart steatosis and cardiomyocyte apoptosis, improving systolic and diastolic function of the left ventricle. Lipogenic factors also regulate fatty acids and glucose utilization in the heart, underlining their important role in maintaining energetic homeostasis in pathological states. Fatty acid synthase, the enzyme catalyzing fatty acids de novo synthesis, affects cardiac calcium signaling through regulation of L-type calcium channel activity. Thus, a growing body of evidence suggests that the role of lipogenic genes in cardiomyocytes may be distinct from other tissues. Here, we review recent advances made in understanding the role of lipogenic genes in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathy.


Asunto(s)
Corazón/fisiología , Lipogénesis , Mitocondrias Cardíacas/metabolismo , Oxidación-Reducción , Animales , Canales de Calcio Tipo L/metabolismo , Ácido Graso Sintasas , Ácidos Grasos/metabolismo , Expresión Génica , Humanos , Estearoil-CoA Desaturasa/metabolismo
3.
Mycoses ; 59(1): 20-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26559663

RESUMEN

Malassezia pachydermatis can cause infections of the skin and mucous membranes, especially in animals. It becomes a problem also in medicine. It is considered that metabolic disorders as well as hormonal and immunological status of the host promote diseases caused by M. pachydermatis. Here we consider whether specific features of fungi could also favour infections. We checked whether there are differences in lipid profiles between strains obtained from dogs with otitis externa and strains obtained from healthy dogs. Lipid profiles were determined using thin layer chromatography and gas chromatography-mass spectrometry. All analyses were carried out on 32 strains derived from dogs with otitis externa and 31 strains isolated from dogs without symptoms of disease. The results show that strains isolated from dogs without symptoms of otitis externa are characterised by a higher content of fatty acids. They contain significantly more behenic and lignoceric acids on medium without addition of lipids, and more oleic acid and total monounsaturated fatty acids on medium with lipids supplementation. These strains have also a higher content of esters of ergosterol and triglycerides. Data obtained show differences which may be specific features of M. pachydermatis-specific strains related to the ability of infection, which could be not directly related of the host condition.


Asunto(s)
Dermatomicosis/veterinaria , Enfermedades de los Perros/microbiología , Lípidos/análisis , Malassezia/química , Malassezia/aislamiento & purificación , Otitis Externa/veterinaria , Animales , Dermatomicosis/microbiología , Perros , Ácidos Grasos/análisis , Otitis Externa/microbiología
4.
Am J Physiol Endocrinol Metab ; 304(12): E1348-58, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23632628

RESUMEN

Cardiac hypertrophy is accompanied by molecular remodeling that affects different cellular pathways, including fatty acid (FA) utilization. In the present study, we show that cardiac lipid metabolism is differentially regulated in response to physiological (endurance training) and pathological [abdominal aortic banding (AAB)] hypertrophic stimuli. Physiological hypertrophy was accompanied by an increased expression of lipogenic genes and the activation of sterol regulatory element-binding protein-1c and Akt signaling. Additionally, FA oxidation pathways regulated by AMP-activated protein kinase (AMPK) and peroxisome proliferator activated receptor-α (PPARα) were induced in trained hearts. Cardiac lipid content was not changed by physiological stimulation, underlining balanced lipid utilization in the trained heart. Moreover, pathological hypertrophy induced the AMPK-regulated oxidative pathway, whereas PPARα and expression of its downstream targets, i.e., acyl-CoA oxidase and carnitine palmitoyltransferase I, were not affected by AAB. In contrast, pathological hypertrophy leads to cardiac triglyceride (TG) and diacylglycerol (DAG) accumulation, although the expression of lipogenic genes and the levels of FA transport proteins (CD36 and FATP) were not changed or reduced compared with the sham group. A possible explanation for this phenomenon is a decrease in lipolysis, as evidenced by the increased content of adipose triglyceride lipase inhibitor G0S2, the increased phosphorylation of hormone-sensitive lipase at Ser(565), and the decreased protein levels of DAG lipase that attenuate TG and DAG contents. The increased TG and DAG accumulation observed in AAB-induced hypertrophy might have lipotoxic effects, thereby predisposing to cardiomyopathy and heart failure in the future.


Asunto(s)
Corazón/fisiología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/fisiopatología , Lipogénesis/genética , Condicionamiento Físico Animal/fisiología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/fisiología , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Lipasa/genética , Lipasa/metabolismo , Lipogénesis/fisiología , Masculino , PPAR alfa/genética , PPAR alfa/metabolismo , Resistencia Física/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Ultrasonografía , Regulación hacia Arriba/fisiología
5.
Mol Membr Biol ; 29(7): 309-20, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22881371

RESUMEN

Protein kinase C (PKC) activation induced by diacylglycerols (DAGs) is one of the sequels of the dysregulation of intramuscular lipid metabolism and is thought to play an important role in the development of insulin resistance (IR). We tested the hypothesis that DAGs with different acyl chains have different biological effects and that DAG species enriched in monounsaturated fatty acids (MUFA) act as better activators of PKC. The experiments were performed in vitro on C2C12 myotubes treated with palmitate (16:0), stearate (18:0) or oleate (18:1) and in vivo on the skeletal muscles of rats fed high-fat (HF), high-tristearin (TS) or high-triolein (TO) diets. To define the importance of endogenously synthesized MUFA on DAG-induced PKCθ activation, we performed experiments on stearoyl-CoA desaturase 1 knockout mice (SCD1-/-) as well. The results show that the content of total DAGs and the levels of saturated DAG species are significantly increased in both insulin-resistant (16:0, HF and TO) and highly insulin-sensitive (18:0 and TS) groups. An increase in MUFA-containing DAGs levels was most constantly related to increase in PKCθ membrane translocation and IR. In the muscles of MUFA-deficient SCD1-/- mice, the DAG content and the induction of PKCθ translocation by the HF diet were significantly reduced. Collectively, our data from both the cell and animal experiments show that DAGs composed of 16:1 and/or 18:1, rather than the levels of total or saturated DAGs, are related to PKCθ membrane translocation. Moreover, our results show that the availability of dietary MUFA and/or the activity of endogenous desaturases play an important role in muscle DAG accumulation.


Asunto(s)
Diglicéridos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Isoenzimas/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Músculo Esquelético/metabolismo , Proteína Quinasa C/metabolismo , Animales , Línea Celular , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Diglicéridos/genética , Ácidos Grasos Monoinsaturados/farmacología , Isoenzimas/genética , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Trastornos del Metabolismo de los Lípidos/genética , Trastornos del Metabolismo de los Lípidos/patología , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/patología , Proteína Quinasa C/genética , Proteína Quinasa C-theta , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Ratas , Ratas Wistar , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
6.
Mitochondrion ; 12(1): 132-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21664496

RESUMEN

In the present study, we tested the hypothesis that cardiac substrate utilization is affected by oleic acid originating from the endogenous conversion of stearate by stearoyl-CoA desaturase and from the diet. Here, we show that the cardiac oleate content is increased in tristearate (TS)- and trioleate (TO)-fed rats when compared with chow-fed rats. TS or TO feeding increases mitochondrial fatty acid oxidation via activation of expression of the oxidative genes, activation of the AMP-activated protein kinase pathway, and a decrease in glucose uptake. These results suggest that oleic acid, both dietary and de novo synthesized, affects substrate utilization in the heart. Furthermore, our data show that the endogenous synthesis of oleate in the heart can compensate for a deficiency of this fatty acid in the diet.


Asunto(s)
Miocardio/metabolismo , Ácido Oléico/metabolismo , Animales , Dieta/métodos , Masculino , Mitocondrias/enzimología , Mitocondrias/metabolismo , Oxidación-Reducción , Ratas , Ratas Wistar , Estearoil-CoA Desaturasa/metabolismo
7.
Mycoses ; 55(3): e106-13, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22066764

RESUMEN

Malassezia pachydermatis and Candida albicans are fungi involved in the skin diseases and systemic infections. The therapy of such infections is difficult due to relapses and problems with pathogen identification. In our study, we compare the fatty acids profile of M. pachydermatis, C. albicans and S. cerevisiae to identify diagnostic markers and to investigate the effect of oxythiamine (OT) on the lipid composition of these species. Total fatty acid content is threefold higher in C. albicans and M. pachydermatis compared with S. cerevisiae. These two species have also increased level of polyunsaturated fatty acids (PUFA) and decreased content of monounsaturated fatty acids (MUFA). We noted differences in the content of longer chain (>18) fatty acids between studied species (for example a lack of 20 : 1 in S. cerevisiae and 22 : 0 in M. pachydermatis and C. albicans). OT reduces total fatty acids content in M. pachydermatis by 50%. In S. cerevisiae, OT increased PUFA whereas it decreased MUFA content. In C. albicans, OT decreased PUFA and increased MUFA and SFA content. The results show that the MUFA to PUFA ratio and the fatty acid profile could be useful diagnostic tests to distinguish C. albicans, M. pachydermatis and S. cerevisiae, and OT affected the lipid metabolism of the investigated species, especially M. pachydermatis.


Asunto(s)
Candida albicans/metabolismo , Dermatomicosis/microbiología , Ácidos Grasos/metabolismo , Malassezia/metabolismo , Oxitiamina/farmacología , Saccharomyces cerevisiae/metabolismo , Candida albicans/química , Candida albicans/efectos de los fármacos , Ácidos Grasos/análisis , Humanos , Malassezia/química , Malassezia/efectos de los fármacos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efectos de los fármacos
8.
J Appl Physiol (1985) ; 109(6): 1653-61, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20847127

RESUMEN

Stearoyl-CoA desaturase (SCD), a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids, has recently been shown to be a critical control point in regulation of liver and skeletal muscle metabolism. Herein, we demonstrate that endurance training significantly increases both SCD1 mRNA and protein levels in the soleus muscle, whereas it does not affect SCD1 expression in the EDL muscle and liver. Desaturation index (18:1Δ9/18:0 ratio), an indirect indicator of SCD1 activity, was also significantly higher (3.6-fold) in soleus of trained rats compared with untrained animals. Consistent with greater SCD1 expression/activity, the contents of free fatty acids, diacylglycerol, and triglyceride were elevated in soleus of trained rats. However, training did not affect lipid concentration in EDL and liver. Additionally, endurance training activated the AMP-activated protein kinase pathway as well as increased peroxisome proliferator-activated receptor (PPAR)-δ and PPARα gene expression and activity in soleus and liver. Increased lipid accumulation in soleus was coupled with elevated protein levels of fatty acid synthase, mRNA levels of diacylglycerol acyltransferase and glycerol-3-phosphate transferase, as well as increased levels of proteins involved in fatty acid transport (fatty acid translocase/CD36, fatty acid transport protein 1). Interestingly, sterol regulatory element-binding protein (SREBP)-1c expression and SREBP-1 protein levels were not affected by exercise training. Together, the obtained data suggest that SCD1 upregulation plays an important role in adaptation of oxidative muscle to endurance training.


Asunto(s)
Contracción Muscular , Músculo Esquelético/enzimología , Resistencia Física , Estearoil-CoA Desaturasa/metabolismo , Triglicéridos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Adaptación Fisiológica , Animales , Transporte Biológico , Ácidos Grasos/metabolismo , Regulación Enzimológica de la Expresión Génica , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Masculino , Oxidación-Reducción , PPAR delta/metabolismo , PPAR gamma/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Estearoil-CoA Desaturasa/genética , Regulación hacia Arriba , Receptor fas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...