Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(23): 14275-14284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36794735

RESUMEN

In recent times, the novel coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now become a worldwide pandemic. With over 71 million confirmed cases, even though the effectiveness and side effects of the specific drugs and vaccines approved for this disease are still limited. Scientists and researchers from all across the world are working to find a vaccine and a cure for COVID-19 by using large-scale drug discovery and analysis. Heterocyclic compounds are regarded to be valuable sources for the discovery of new antiviral medications against SARS-CoV-2 because virus occurrences are still on the rise, and infectivity and mortality may also rise shortly. In this regard, we have synthesized a new triazolothiadiazine derivative. The structure was characterized by NMR spectra and confirmed by X-ray diffraction analysis. The structural geometry coordinates of the title compound are well reproduced by DFT calculations. NBO and NPA analyses have been performed to determine the interaction energies between bonding and antibonding orbital, and natural atomic charges of heavy atoms. Molecular docking suggests that the compounds may have good affinity for SAR-CoV-2 main protease, RNA-dependent RNA polymerase and nucleocapsid enzymes, particularly the main protease enzyme (binding energy of -11.9 kcal mol-1). The predicted docked pose of the compound is dynamically stable and reports a major van der Waals contribution (-62.00 kcal mol-1) to overall net energy.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Tiadiazinas , Humanos , SARS-CoV-2 , Tiadiazinas/farmacología , Simulación del Acoplamiento Molecular , Rayos X , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Péptido Hidrolasas , Simulación de Dinámica Molecular , Antivirales/farmacología , Antivirales/química
2.
Bioorg Chem ; 132: 106344, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669356

RESUMEN

In this study, new derivatives of the antitubercular and anti-inflammatory drug, 4-aminosaliclic acids (4-ASA) were synthesized, characterized, and evaluated for these activities. In vivo and in viro evaluation of anti-inflammatory activity revealed that compounds 10, 19 and 20 are the most active with potent cyclooxygenase-2 (COX-2) and 5-lipooxgenase (5-LOX) inhibition and without causing gasric lesions. The minimum inhibitory concentrations (MIC) of the newly synthesized compound were, also, measured against Mycobacterium tuberculosis H37RV. Among the tested compounds 17, 19 and 20 exhibited significant activities against the growth of M. tuberculosis. 20 is the most potent with (MIC 1.04 µM) 2.5 folds more potent than the parent drug 4-ASA. 20 displayed low cytotoxicity against normal cell providing a high therapeutic index. Important structure features were analyzed by docking and structure-activity relationship analysis to give better insights into the structural determinants for predicting the anti-inflammatory and anti-TB activities. Our results indicated that compounds 19 and 20 are potential lead compounds for the discovery of dual anti-inflammatory and anti-TB drug candidates.


Asunto(s)
Ácido Aminosalicílico , Mycobacterium tuberculosis , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Antituberculosos/química , Relación Estructura-Actividad , Estructura Molecular , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA