Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
PeerJ Comput Sci ; 9: e1628, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869467

RESUMEN

Simultaneous localization and mapping (SLAM) is a fundamental problem in robotics and computer vision. It involves the task of a robot or an autonomous system navigating an unknown environment, simultaneously creating a map of the surroundings, and accurately estimating its position within that map. While significant progress has been made in SLAM over the years, challenges still need to be addressed. One prominent issue is robustness and accuracy in dynamic environments, which can cause uncertainties and errors in the estimation process. Traditional methods using temporal information to differentiate static and dynamic objects have limitations in accuracy and applicability. Nowadays, many research trends have leaned towards utilizing deep learning-based methods which leverage the capabilities to handle dynamic objects, semantic segmentation, and motion estimation, aiming to improve accuracy and adaptability in complex scenes. This article proposed an approach to enhance monocular visual odometry's robustness and precision in dynamic environments. An enhanced algorithm using the semantic segmentation algorithm DeeplabV3+ is used to identify dynamic objects in the image and then apply the motion consistency check to remove feature points belonging to dynamic objects. The remaining static feature points are then used for feature matching and pose estimation based on ORB-SLAM2 using the Technical University of Munich (TUM) dataset. Experimental results show that our method outperforms traditional visual odometry methods in accuracy and robustness, especially in dynamic environments. By eliminating the influence of moving objects, our method improves the accuracy and robustness of visual odometry in dynamic environments. Compared to the traditional ORB-SLAM2, the results show that the system significantly reduces the absolute trajectory error and the relative pose error in dynamic scenes. Our approach has significantly improved the accuracy and robustness of the SLAM system's pose estimation.

2.
Sensors (Basel) ; 22(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35161996

RESUMEN

Processes for evaluating software architecture (SA) help to investigate problems and potential risks in SA. It is derived from many studies that proposed a plethora of systematic SA evaluation methods, while industrial practitioners currently refrain from applying them since they are heavyweight. Nowadays, heterogeneous software architectures are organized based on the new infrastructure. Hardware and associated software allow different systems, such as embedded, sensor-based, modern AI, and cloud-based systems, to cooperate efficiently. It brings more complexities to SA evaluation. Alternatively, lightweight architectural evaluation methods have been proposed to satisfy the practitioner's concerns, but practitioners still do not adopt these methods. This study employs a systematic literature review with a text analysis of SA's definitions to propose a comparison framework for SA. It identifies lightweight features and factors to improve the architectural evaluation methods among industrial practitioners. The features are determined based on the practitioner's concerns by analyzing the architecture's definitions from stakeholders and reviewing architectural evaluation methods. The lightweight factors are acquired by studying the five most commonly used lightweight methods and the Architecture-based Tradeoff Analysis Method (ATAM), the most well-known heavyweight method. Subsequently, the research addresses these features and factors.


Asunto(s)
Hernia Inguinal , Hernia Inguinal/cirugía , Herniorrafia , Humanos , Industrias , Programas Informáticos , Mallas Quirúrgicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA