Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23381, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38102952

RESUMEN

Dysfunction of the human voltage-gated K+ channel Kv1.1 has been associated with epilepsy, multiple sclerosis, episodic ataxia, myokymia, and cardiorespiratory dysregulation. We report here that AETX-K, a sea anemone type I (SAK1) peptide toxin we isolated from a phage display library, blocks Kv1.1 with high affinity (Ki ~ 1.6 pM) and notable specificity, inhibiting other Kv channels we tested a million-fold less well. Nuclear magnetic resonance (NMR) was employed both to determine the three-dimensional structure of AETX-K, showing it to employ a classic SAK1 scaffold while exhibiting a unique electrostatic potential surface, and to visualize AETX-K bound to the Kv1.1 pore domain embedded in lipoprotein nanodiscs. Study of Kv1.1 in Xenopus oocytes with AETX-K and point variants using electrophysiology demonstrated the blocking mechanism to employ a toxin-channel configuration we have described before whereby AETX-K Lys23 , two positions away on the toxin interaction surface from the classical blocking residue, enters the pore deeply enough to interact with K+ ions traversing the pathway from the opposite side of the membrane. The mutant channel Kv1.1-L296 F is associated with pharmaco-resistant multifocal epilepsy in infants because it significantly increases K+ currents by facilitating opening and slowing closure of the channels. Consistent with the therapeutic potential of AETX-K for Kv1.1 gain-of-function-associated diseases, AETX-K at 4 pM decreased Kv1.1-L296 F currents to wild-type levels; further, populations of heteromeric channels formed by co-expression Kv1.1 and Kv1.2, as found in many neurons, showed a Ki of ~10 nM even though homomeric Kv1.2 channels were insensitive to the toxin (Ki > 2000 nM).


Asunto(s)
Epilepsia , Mutación con Ganancia de Función , Humanos , Péptidos/genética , Péptidos/farmacología , Epilepsia/genética , Bloqueadores de los Canales de Potasio/farmacología
2.
Chembiochem ; 20(6): 813-821, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30565824

RESUMEN

The bacterial potassium channel KcsA is gated by pH, opening for conduction under acidic conditions. Molecular determinants responsible for this effect have been identified at the extracellular selectivity filter, at the membrane-cytoplasm interface (TM2 gate), and in the cytoplasmic C-terminal domain (CTD), an amphiphilic four-helix bundle mediated by hydrophobic and electrostatic interactions. Here we have employed NMR and EPR to provide a structural view of the pH-induced open-to-closed CTD transition. KcsA was embedded in lipoprotein nanodiscs (LPNs), selectively methyl-protonated at Leu/Val residues to allow observation of both states by NMR, and spin-labeled for the purposes of EPR studies. We observed a pHinduced structural change between an associated structured CTD at neutral pH and a dissociated flexible CTD at acidic pH, with a transition in the 5.0-5.5 range, consistent with a stabilization of the CTD by channel architecture. A double mutant constitutively open at the TM2 gate exhibited reduced stability of associated CTD, as indicated by weaker spin-spin interactions, a shift to higher transition pH values, and a tenfold reduction in the population of the associated "closed" channels. We extended these findings for isolated CTD-derived peptides to full-length KcsA and have established a contribution of the CTD to KcsA pH-controlled gating, which exhibits a strong correlation with the state of the proximal TM2 gate.


Asunto(s)
Proteínas Bacterianas/metabolismo , Activación del Canal Iónico , Lipoproteínas/química , Nanoestructuras/química , Canales de Potasio/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dimiristoilfosfatidilcolina/química , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Mutación , Resonancia Magnética Nuclear Biomolecular , Canales de Potasio/química , Canales de Potasio/genética , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA