Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(7): 103846, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796987

RESUMEN

The hazard of diseases created by S. Enteritidis and S. Typhimurium is relatively high in turkey meat products. Combinations of preservation methods are utilized in many strategies, such as mild heat with decreased water activity, a changed atmosphere, refrigerated storage, and decreased heat treatment with some acidification. Within the domain of ready-to-eat food technology, a range of preservation methods are typically utilized to enhance shelf life, such as applying mild heat in tandem with reduced water activity, employing modified atmosphere packaging, utilizing refrigerated storage, and utilizing reduced heat treatment combined with acidification. This investigation aimed to determine how S. Enteritidis and S. Typhimurium grew when sliced ready-to-eat smoked turkey (RTE-SM) was stored at 0, 5, 10, and 15°C for various periods. The study also examined the effects of modified atmosphere packaging (MAP) (40% CO2 and 60% N2) and VP on these growth patterns. Total viable count (TVC), lactic acid bacteria (LAB), pH, and redox potential levels were determined. The control experiment on RTE-SM showed no Salmonella growth within 30 d of storage at any temperature. This indicated that the RTE-SM in use did not initially contain S. Typhimurium and S. Enteritidis. Results indicated that the storage of RTE-SM using a combination of VP, MAP, and MAPEO with storage at 0 and 5°C did not allow for the pathogen to grow throughout storage. In comparison, at 10 and 15°C after one day, which allowed for minor growth (0.17-0.5 log CFU/g)? In contrast, at 0 and 5°C, Salmonella survives until the end of storage (173 d). However, the combination of MAPEO with the same storage temperatures achieved the elimination of the pathogen in the meat after 80 d. The combination of both packaging systems with high temperatures (10 or 15°C) allowed for the multiplication and growth of the bacterium through the product's shelf life of more than 1 log CFU/g. Thus, a combination of MAP or MAPEO with low storage temperatures (0 or 5°C) inhibited the growth of the pathogen.

2.
Poult Sci ; 103(3): 103409, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215509

RESUMEN

The aim of this research was to evaluate the influence of lettuce seed oil (LSO) on the performance, carcass yield, kidney and liver indices, immunity, lipid profile, and cecal microbiota of fattening chicks. A total of 200, 7-day-old Cobb-500 were distributed into 5 experimental groups; each group contained 5 replicates with 8 birds each. The first group 1) the basal diet (only); 2) the basal diet plus lettuce seed oil (0.50 mL/kg); 3) the basal diet plus lettuce seed oil (1.00 mL/kg); 4) the basal diet plus lettuce seed oil (1.50 mL/kg); and 5) the basal diet plus lettuce seed oil (2.00 mL/kg). No significant effect was observed on growth performance, carcass traits, or kidney function at any level of oil. But, liver function was significantly affected due to LSO levels. Serum lipid profiles (total cholesterol-TC, triglyceride-TG, low-density lipoprotein-LDL, and very low-density lipoprotein-VLDL) were significantly reduced by using LSO levels compared to the control group. Dietary LSO significantly increased immunological and antioxidant parameters, except for malondialdehyde-MDA, which was reduced. On the other hand, the cecal microbiota was significantly improved by LSO additives. It was concluded that the dietary supplementation of LSO had beneficial effects on liver and kidney functions, lipid profile, immunity, antioxidant parameters, and the bacteriology of fattening chicks.


Asunto(s)
Grasas Insaturadas en la Dieta , Microbioma Gastrointestinal , Animales , Lactuca , Antioxidantes , Pollos , Hígado , Riñón , Suplementos Dietéticos , Lipoproteínas LDL , Aceites de Plantas/farmacología
3.
Molecules ; 28(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36770871

RESUMEN

Phenols are very soluble in water; as a result, they can pollute a massive volume of fresh water, wastewater, groundwater, oceans, and soil, negatively affecting plant germination and animal and human health. For the detoxification and bioremediation of phenol in wastewater, phenol biodegradation using novel bacteria isolated from sewage sludge was investigated. Twenty samples from sewage sludge (SS) were collected, and bacteria in SS contents were cultured in the mineral salt agar (MSA) containing phenol (500 mg/L). Twenty colonies (S1 up to S20) were recovered from all the tested SS samples. The characteristics of three bacterial properties, 16S rDNA sequencing, similarities, GenBank accession number, and phylogenetic analysis showed that strains S3, S10, and S18 were Pseudomonas aeruginosa, Klebsiella pneumoniae, and Klebsiella variicola, respectively. P. aeruginosa, K. pneumoniae, and K. variicola were able to degrade 1000 mg/L phenol in the mineral salt medium. The bacterial strains from sewage sludge were efficient in removing 71.70 and 74.67% of phenol at 1000 mg/L within three days and could tolerate high phenol concentrations (2000 mg/L). The findings showed that P. aeruginosa, K. pneumoniae, and K. variicola could potentially treat phenolic water. All soybean and faba bean seeds were germinated after being treated with 250, 500, 750, and 1000 mg/L phenol in a mineral salt medium inoculated with these strains. The highest maximum phenol removal and detoxification rates were P. aeruginosa and K. variicola. These strains may help decompose and detoxify phenol from industrial wastewater with high phenol levels and bioremediating phenol-contaminated soils.


Asunto(s)
Fenol , Aguas del Alcantarillado , Humanos , Aguas del Alcantarillado/microbiología , Fenol/metabolismo , Pseudomonas aeruginosa/metabolismo , Aguas Residuales , Glycine max/metabolismo , Biodegradación Ambiental , Filogenia , Fenoles/metabolismo , Bacterias/metabolismo , Klebsiella pneumoniae/metabolismo , Semillas/metabolismo , Minerales/metabolismo
4.
Animals (Basel) ; 11(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34827760

RESUMEN

Nano-minerals are used to enhance mineral bioavailability, which helps improve animal growth and health. The use of chemical nano-selenium (Che-SeNPs) has lately attracted great scientific interest, mainly due to its potential benefits for poultry. The current study was conducted to investigate the impact of the dietary supplementation of Che-SeNPs on the growth performance, carcass traits, blood constituents, antioxidant status, immunity, and gut microbiota of Japanese quails. A total of one week-old 180 Japanese quails were randomly distributed into four equal groups, and each group consisted of 45 unsexed birds with five replications (nine birds each). The first group was fed a basal diet without supplementation (0 g/kg Che-SeNPs), and the second, third, and fourth groups were fed diets containing 0.2, 0.4, and 0.6 g/kg Che-SeNPs, respectively. The results showed that the dietary supplementation of Che-SeNPs significantly (p < 0.0001) increased body weight, body weight gain, and feed conversion ratio, but decreased feed intake (p < 0.0001) compared to the control group. The highest values of growth performance were recorded in the group fed 0.4 g Che-SeNPs g/kg feed. Che-SeNPs levels did not affect the carcass traits, relative organs (except liver), or blood hematology (except platelet count and hemoglobin level) of quails. Plasma total protein, albumin, aspartate amino transferase (AST), and urea values were not affected by dietary Che-SeNPs, but alanine aminotransferase and lactate dehydrogenase values declined. Globulin and creatinine values were linearly increased with the inclusion of Che-SeNPs (0.4 and 0.6 g/kg) in quail diets compared to the control. The supplementation of Che-SeNPs in quail diets significantly improved (p < 0.05) the plasma lipid profile and activities of antioxidant enzymes compared to the control group. Immunoglobulin G values of Che-SeNPs (0.4 and 0.6 g/kg) were higher (p < 0.05) than those in the control group. The groups fed diets supplemented with Che-SeNPs showed lower (p < 0.0001) total bacterial count, total yeast and molds count, Coliform, Escherichia coli, Enterococcus spp., and Salmonella spp. colonization, and higher (p = 0.0003 and 0.0048) lactic acid bacteria counts than those in the control group. In conclusion, Che-SeNPs supplemented up to 0.4 g/kg can improve the performance, lipid profile, antioxidant indices, and immunity, as well as decrease intestinal pathogens in quails during the fattening period (1-5 weeks of age).

5.
Saudi J Biol Sci ; 28(8): 4532-4541, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34354439

RESUMEN

This experiment investigated the role of graded dietary levels of two probiotic strains (Bacillus toyonensis; BT and Bifidobacterium bifidum; BB) on the growth rate, carcass traits, physiological and histological aspects of growing Japanese quail. One thousand and three hundred sixty one-day-old un-sexed Japanese quail chicks were distributed randomly into ten groups. The 1st group served as a control and fed the basal diet without supplement while the 2nd, 3rd, 4th and 5th groups received the control diet supplemented with 0.05, 0.075, 0.10 and 0.125% BT, respectively. The 6th group fed the control diet plus 0.10% BB while the remaining groups (7th to 10th) received the basal diet incorporated with the previous levels of BT rich with 0.05% BB. Dietary supplementation of BT and/or BB increased body weight and gain; however, feed intake and feed conversion were not affected. Amylase activity was significantly elevated in 5th, 7th and 9th groups, while lipase activity was improved in all treatment groups except 3rd and 6th groups. Results obtained concluded that dietary supplementation of BT with or without BB is useful for performance, digestive enzyme activities, blood cholesterols, antioxidant status and ileal histomorphometry and microbiota of growing Japanese quail.

6.
Environ Sci Pollut Res Int ; 28(18): 22241-22264, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33733422

RESUMEN

Diseases negatively impact the environment, causing many health risks and the spread of pollution and hazards. A novel coronavirus, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has led to a recent respiratory syndrome epidemic in humans. In December 2019, the sudden emergence of this new coronavirus and the subsequent severe disease it causes created a serious global health threat and hazards. This is in contrast to the two aforementioned coronaviruses, SARS-CoV-2 (in 2002) and middle east respiratory syndrome coronavirus MERS-CoV (in 2012), which were much more easily contained. The World Health Organization (WHO) dubbed this contagious respiratory disease an "epidemic outbreak" in March 2020. More than 80 companies and research institutions worldwide are working together, in cooperation with many governmental agencies, to develop an effective vaccine. To date, six authorized vaccines have been registered. Up till now, no approved drugs and drug scientists are racing from development to clinical trials to find new drugs for COVID-19. Wild animals, such as snakes, bats, and pangolins are the main sources of coronaviruses, as determined by the sequence homology between MERS-CoV and viruses in these animals. Human infection is caused by inhalation of respiratory droplets. To date, the only available treatment protocol for COVID-19 is based on the prevalent clinical signs. This review aims to summarize the current information regarding the origin, evolution, genomic organization, epidemiology, and molecular and cellular characteristics of SARS-CoV-2 as well as the diagnostic and treatment approaches for COVID-19 and its impact on global health, environment, and economy.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Brotes de Enfermedades , Ambiente , Humanos , SARS-CoV-2
7.
J Anim Physiol Anim Nutr (Berl) ; 104(6): 1835-1850, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32996177

RESUMEN

The use of antibiotics to maintain animal well-being, promote growth and improve efficiency has been practised for more than 50 years. However, as early as the 1950s, researchers identified concern on the development of resistant bacteria for the antibiotics streptomycin and tetracycline used in turkeys and broilers respectively. These findings laid the groundwork for agricultural officials to impose stricter regulatory parameters on the use of antibiotics in poultry feeds. Probiotics are live micro-organisms included in the diet of animals as feed additives or supplements. Commonly known as a direct-fed microbial, probiotics provide beneficial properties to the host, primarily through action in the gastrointestinal tract (GIT) of the animal. Supplementation of probiotics in the diet can improve animal health and performance, through contributions to gut health and nutrient use. For instance, supplementation of probiotics has been demonstrated to benefit farm animals in immune modulation, structural modulation and increased cytokine production, which positively affect the intestinal mucosal lining against pathogens. Bacillus subtilis has been a popular bacterium used within the industry and was shown to improve intestinal villus height. Increasing the villus height and structure of the crypts in the GIT allows for the improvement of nutrient digestion and absorption. Tight junctions maintain important defences against pathogenic bacteria and cellular homeostasis. Heat stress can be a major environmental challenge in the poultry industry. Heat stress causes the bird to fluctuate its internal core temperature beyond their comfort zone. To overcome such challenges, poultry will attempt to balance its heat production and dissipation through behavioural and physiological adaptation mechanisms.


Asunto(s)
Probióticos , Alimentación Animal/análisis , Animales , Bacillus subtilis , Pollos , Aves de Corral , Pavos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...