Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int. microbiol ; 26(4): 1143-1155, Nov. 2023. ilus
Artículo en Inglés | IBECS | ID: ibc-227499

RESUMEN

One of the biggest global causes of death is cancer. The side effects of currently available therapies have triggered the search for new drugs. The marine environment, with its vast biodiversity, including sponges, is a rich source of natural products with immense pharmaceutical potential. The aim of the study was to analyze the microbes associated with the marine sponge, Lamellodysidea herbacea, and explore them as resources for anticancer ability. This study includes the isolation of fungi from L. herbacea, and their evaluation for cytotoxic potential against human cancer cell lines such as A-549 (lung), HCT-116 (colorectal carcinoma), HT-1080 (Fibrosarcoma), and PC-3 (prostate) using MTT assay. This revealed that fifteen extracts showed significant anticancer ability (IC50 ≤ 20 µg/mL), at least against one of the cell lines. Three extracts, SPG12, SPG19, and SDHY 01/02, were found significant in terms of anticancer activity, at least against three to four cell lines (IC50 values ≤ 20 µg/mL). The fungus SDHY01/02 was identified by sequencing the internal transcribed spacer (ITS) region as Alternaria alternata. Its extract showed IC50 values < 10 µg/mL against all the tested cell lines and was further analysed through light and fluorescence microscopy. The extract of SDHY01/02 was active (lowest IC50 4.27 µg/mL) against A549 cells in a dose-dependent manner and caused apoptotic cell death. Further, the extract was fractionated and analyzed the constituents by GC-MS (Gas Chromatography-Mass Spectrometry). Di-ethyl ether fraction revealed the constituents (having anticancer activity) such pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methyl propyl); 4,5,6,7-tetrahydro-benzo[C]rhiophene-1-carboxylic acid cyclopropylamide; 17-pentatriacontene; 9,12-octadecadienoic acid (Z, Z)-, methyl ester; while DCM fraction contained Oleic acid, eicosyl ester. This is the first report of A. alternata with anticancer potential that has been isolated from the sponge L. herbacea, as far as we are aware.This A. alternata can be exploited to get anticancer molecule(s) in the future.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Alternaria , Ésteres , Línea Celular Tumoral , Extractos Vegetales/química , Poríferos , Microbiología , Técnicas Microbiológicas , Neoplasias , Filogenia
2.
Nat Prod Res ; : 1-11, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37449969

RESUMEN

This study was designed to identify cytotoxic compounds from Carissa carandas extract. The cytotoxic activity of extract and fractions were assessed against eight cancer cell lines. The chloroform fraction obtained from methanolic extract exhibited significant activity against MCF-7, HT-29, A-549 with IC50 values of 3.98 µg/mL (MCF-7), 1.28µg/mL (HT-29) and 1.48 µg/mL (A-549) respectively. Further investigation led to the isolation of novel compound carissic acid (CA), which was confirmed by detailed spectroscopy studies. CA exhibited notable activity with IC50 values of 3.47 µM for A-549, 2.65 µM for HT-29 and 13.58 ± 0.59 µM for MCF-7 cells. CAcaused chromatin condensation with decrease of mitochondrial membrane potential and also confirmed cell death via Reactive Oxygen Species (ROS) generation and significantly decreased the colony formation in dose-dependent manner. The overall findings suggested that CA demonstrates cytotoxic effect by inhibiting cell proliferation and promoting apoptosis in lung (A-549) carcinoma cell line.

3.
Int Microbiol ; 26(4): 1143-1155, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37142818

RESUMEN

One of the biggest global causes of death is cancer. The side effects of currently available therapies have triggered the search for new drugs. The marine environment, with its vast biodiversity, including sponges, is a rich source of natural products with immense pharmaceutical potential. The aim of the study was to analyze the microbes associated with the marine sponge, Lamellodysidea herbacea, and explore them as resources for anticancer ability. This study includes the isolation of fungi from L. herbacea, and their evaluation for cytotoxic potential against human cancer cell lines such as A-549 (lung), HCT-116 (colorectal carcinoma), HT-1080 (Fibrosarcoma), and PC-3 (prostate) using MTT assay. This revealed that fifteen extracts showed significant anticancer ability (IC50 ≤ 20 µg/mL), at least against one of the cell lines. Three extracts, SPG12, SPG19, and SDHY 01/02, were found significant in terms of anticancer activity, at least against three to four cell lines (IC50 values ≤ 20 µg/mL). The fungus SDHY01/02 was identified by sequencing the internal transcribed spacer (ITS) region as Alternaria alternata. Its extract showed IC50 values < 10 µg/mL against all the tested cell lines and was further analysed through light and fluorescence microscopy. The extract of SDHY01/02 was active (lowest IC50 4.27 µg/mL) against A549 cells in a dose-dependent manner and caused apoptotic cell death. Further, the extract was fractionated and analyzed the constituents by GC-MS (Gas Chromatography-Mass Spectrometry). Di-ethyl ether fraction revealed the constituents (having anticancer activity) such pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methyl propyl); 4,5,6,7-tetrahydro-benzo[C]rhiophene-1-carboxylic acid cyclopropylamide; 17-pentatriacontene; 9,12-octadecadienoic acid (Z, Z)-, methyl ester; while DCM fraction contained Oleic acid, eicosyl ester. This is the first report of A. alternata with anticancer potential that has been isolated from the sponge L. herbacea, as far as we are aware.This A. alternata can be exploited to get anticancer molecule(s) in the future.


Asunto(s)
Poríferos , Masculino , Animales , Humanos , Línea Celular Tumoral , Alternaria , Extractos Vegetales/química , Ésteres
5.
Curr Microbiol ; 80(1): 7, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36445554

RESUMEN

Rumex abyssinicus Jacq. is a perennial medicinal herb widely used in traditional medicine to treat many diseases. Phytochemicals of the plant were isolated using column chromatography and thin layer chromatography techniques. Extract, fractions and pure compounds were screened for antimicrobial activity against sensitive and multi-drug resistant microbes and their cytotoxicity was performed on different cancer cell lines. The mechanism of action of purified helminthosporin as well as the potent fraction containing a mixture of two compounds was assessed. Fraction R7C3 was the most potent antibacterial with the lowest MIC value of 0.12 µg/mL. Helminthosporin was the most potent compound with the lowest MIC value of 1.95 µg/mL. The compound was more potent than the antibiotic chloramphenicol against multi-drug resistant (MDR) bacteria with MIC equal to 16 µg/mL. The fraction and helminthosporin were shown to destroy the cell wall of the yeast and bacteria, and DNA fragmentation effect on the genome of Candida albicans and Bacillus cereus. Helminthosporin was the most cytotoxic compound with IC50 ˂ 10 µM. Fraction R7C3 showed the most potent cytotoxic effects on all cancer cell lines, with IC50 ranging from ˂1 to 4.35 ng/mL. Our study is the first report on the mechanism of action of helminthosporin, a potent candidate in the development of new drugs against multi-resistant bacteria and cancer cells. In addition, this study uncovered Rumex abyssinicus as a new source of syringic acid and bis(2-ethyloctyl) phthalate.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Rumex , Antiinfecciosos/farmacología , Antibacterianos
6.
ACS Omega ; 7(33): 29135-29141, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36033687

RESUMEN

The Rosellinia sanctae-cruciana extract was subjected to detailed liquid chromatography tandem mass spectrometry studies. A total of 38 peaks were annotated to m/z 508.26, m/z 510.28, m/z 524.26, m/z 526.28, m/z 540.26, m/z 542.27, and m/z 584.28 [M + H]+. The accurate mass, mutually supported UV/vis spectra, and database search identified these compounds as cytochalasins. Systematic dereplication helped identify a peak at m/z 540.26 [M + H]+ as the new compound. Further, the identified compound was purified by high-performance liquid chromatography and characterized by 2D NMR to be 19,20-epoxycytochalasin N1, a new optical isomer of 19,20-epoxycytochalasin-N. It exhibited substantial cytotoxicity with IC50 values ranging from 1.34 to 19.02 µM. This study shows a fast approach for dereplicating and identifying novel cytochalasin metabolites in crude extracts.

7.
ACS Pharmacol Transl Sci ; 5(5): 306-320, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35592435

RESUMEN

PMBA (2-Pyridin-4-yl-methylene-beta-boswellic acid), screened from among the 21 novel series of semisynthetic analogues of ß-boswellic acid, is being presented as a lead compound for integrative management of KRAS mutant colorectal cancer (CRC), upon testing and analysis for its anticancerous activity on a panel of NCI-60 cancer cell lines and in vivo models of the disease. PMBA (1.7-29 µM) exhibited potent proliferation inhibition on the cell lines and showed sensitivity in microsatellite instability and microsatellite stable (GSE39582 and GSE92921) subsets of KRAS gene (Kirsten rat sarcoma viral oncogene homolog)-mutated colon cell lines, as revealed via flow cytometry analysis. A considerable decrease in mitogen-activated protein kinase pathway downstream effectors was observed in the treated cell lines via the western blot and STRING (Search tool for the retrieval of interacting genes/proteins) analysis. PMBA was further found to target KRAS at its guanosine diphosphate site. Treatment of the cell lines with PMBA showed significant reduction in MGMT promoter methylation but restored MGMT (O6-methylguanine-DNA methyltransferase) messenger ribonucleic acid expression via significant demethylation of the hypermethylated CpG (Cytosine phosphate guanine) sites in the MGMT promoter. A significant decrease in dimethylated H3K9 (Dimethylation of lysine 9 on histone 3) levels in the MGMT promoter in DNA hypo- and hypermethylated HCT-116G13D and SW-620G12V cells was observed after treatment. In the MNU (N-methyl-N-nitrosourea)-induced CRC in vivo model, PMBA instillation restricted and repressed polyp formation, suppressed tumor proliferation marker Ki67 (Marker of proliferation), ablated KRAS-associated cytokine signaling, and decreased mortality. Clinical trial data for the parent molecule revealed its effectiveness against the disease, oral bioavailability, and system tolerance. Comprehensively, PMBA represents a new class of KRAS inhibitors having a therapeutic window in the scope of a drug candidate. The findings suggest that the PMBA analogue could inhibit the growth of human CRC in vivo through downregulation of cancer-associated biomarkers as well as reactivate expression of the MGMT gene associated with increased H3K9 acetylation and H3K4 methylation with facilitated transcriptional activation, which might be important in silencing of genes associated with upregulation in the activity of KRAS.

8.
Cell Physiol Biochem ; 56(2): 180-208, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35462471

RESUMEN

Cancer is a chaos of uncontrolled cell proliferation that has consistently invented new circuitry programs to operate inside the cell machinery. Globally, cancer statistics account for 65% of mortality worldwide, mainly due to the adoption of lifestyle behaviours. In 2020, FDA approved 40 new drugs, out of which 16 (40%) were approved as cancer drugs. Overall, the risk of dying from cancer decreased, but further reductions in cancer death rates can be accelerated by applying existing cancer control knowledge across all the population segments, emphasising those in the lowest socio-economic and other disadvantaged population. Various therapeutic regimes, including low-molecular-weight inhibitors, targeting oncogenic signaling pathways are under development. However, the pitfall of targeted therapies is the quick emergence of acquired drug resistance encumbered with toxic side effects. Several FDA acclaimed therapeutic legacies or biosimilars earmarked signaling pathways of rare diseases (cystic fibrosis, erythropoietic protoporphyria, neuromyelitis optica spectrum disorder, tenosynovial giant cell tumor, sickle cell disease, systemic sclerosis-associated interstitial lung disease, muscular dystrophy), neurological and psychiatric disorders, infectious diseases, heart, lung, circulatory, endocrine diseases, autoimmune conditions, cancers and blood disorders. When cancer progresses, these signals develop specific characteristics that can be targeted for anti-cancer therapy. The designer inhibitors have emerged as novel pharmaceutical interventions that aim to block the pathways in an effort to reverse the abnormal phenotype of the cancer cells. Numerous cell-signaling channels have evolved and invigorated to make off three-dimensional feedback networks. The magnitude of accessible information by pathways occupies curated information as a consortium. To fully appreciate the pivotal roles that signaling cascades play in tumor development, it is necessary to understand the involved signaling cascades in the interaction between cancer cells. The prime endeavour is to canonically curate all signaling pathways involving cell cycle, EGFR, MAPK, GPCR, PI3K/ AKT/mTOR, immune checkpoints, nuclear receptors, janus kinase, transcription activators etc., involving the manipulation of genetic and nuclear receptors. Here, we will summarize the vast amount of information describing the signals that mediate crosstalk between cancer cells and the targets related to this crosstalk.


Asunto(s)
Antineoplásicos , Biosimilares Farmacéuticos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biosimilares Farmacéuticos/farmacología , Biosimilares Farmacéuticos/uso terapéutico , Proliferación Celular , Humanos , Neoplasias/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
9.
Heliyon ; 8(4): e09103, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35445157

RESUMEN

ß-Boswellic acid (ß-BA), a potent NF-kB signaling pathway inhibitor, has shown synergistic anti-cancerous activity (NCT03149081, NCT00243022 and NCT02977936) in various clinical trials as complementary therapies. The study has been conducted to investigate the effect and efficacy of 2-pyridin-4-yl methylene ß-boswellic acid (PMBA) and 5-Flourouracil (5-FU) in combination therapy for the treatment of KRAS mutant colon cancer. Analysis of isobologram showed synergistic combination index (CI > 1) of PMBA and 5-FU against the HCT-116 G13D and SW-620 G12V cell lines. The growth-inhibiting PMBA also caused apoptosis mediating effects with dose-dependent increase in caspase-3 activity, while inhibiting the formation of colonies in combination with 5-FU. As evident, PMBA affected colorectal 3D CSC properties including the ability to self-renew along with the expression of multi-drug resistance genes, viz., ABCB1, ABCC1 and ALDH1A1, ALDH1A2, ALDH1A3, ALDH3A1, and CSC markers like CD44, CD166, EPCAM, OCT-4, SOX-2, and NANOG compared with those in 2D model explaining the expression pattern of oncogenic KRAS G13D, G12V mutation. When examined for plasma level of PMBA (20 mg) and PMBA+5-FU (20 + 40 mg), a time-dependent increase in the level of the drug (5-FU) was detected, indicating its absorption and bioavailability with excellent half-life of the PMBA for both routes of administration (IV and Oral), thereby indicating a new adjuvant therapy for KRAS mutant colon cancer.

10.
ACS Omega ; 6(5): 3717-3726, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33585752

RESUMEN

Seven cytochalasins, 19,20-epoxycytochalasin N, cytochalasin P1, deacetyl 19,20-epoxycytochalasin C, 19,20-epoxycytochalasin D, 19,20-epoxycytochalasin C, cytochalasin D, and cytochalasin C, were isolated from a fungal (Rosellinia sanctae-cruciana) crude extract. A cytotoxicity assay (sulforhodamine B) was performed on a series of cancer cell lines: HT-29, A-549, PC-3, HCT-116, SW-620, and MCF-7. Simultaneously, the liquid chromatography-mass spectrometry (LC-MS)/MS profile of 19,20-epoxycytochalasin C-treated cell lines revealed that 19,20-epoxycytochalasin C (m/z 524.25) oxidized to a metabolite of m/z 522.25 Da (-2 Da (-2H) from 19,20-epoxycytochalasin C). Further chemical oxidation of 19,20-epoxycytochalasin C using the Dess-Martin reagent produced an identical metabolite. It has been noticed that the parent molecule (19,20-epoxycytochalasin C) showed an IC50 of 650 nM (on HT-29), whereas for the oxidized metabolite (m/z 522.24) of 19,20-epoxycytochalasin C, the IC50 was >10 µM. It is clear that the parent molecule had 16 times higher cytotoxic potential as compared to the oxidized metabolite. The spectroscopic investigation indicated that the oxidation of the hydroxyl (-OH) group occurred at the C7 position in 19,20-epoxycyctochalsin C and led to the inactivation of 19,20-epoxycytochalasin C. Further, cell cycle analysis and histopathological evidence support the findings, and CDK2 could be a possible target of 19,20-epoxycyctochalasin C.

11.
ACS Omega ; 5(38): 24296-24310, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33015446

RESUMEN

A new secalonic acid derivative, F-7 (1), was isolated from the endophytic Aspergillus aculeatus MBT 102, associated with Rosa damascena. The planar structure of 1 was established on the basis of 1D and 2D NMR and ESI-TOF-MS spectra. The relative configuration of 1 was determined applying a combined quantum mechanical/NMR approach and, afterward, the comparison of calculated and experimental electronic circular dichroism spectra determined the assignment of its absolute configuration. The compound possesses strong cytotoxic activity against triple negative breast cancer (TNBC) cells. It was found to induce apoptosis, as evidenced by scanning electron microscopy and phase contrast microscopy. Furthermore, flow cytometry analyses demonstrated that 1 induced mitochondrial damage and reactive oxygen species mediated apoptosis, arresting the G1 phase of the cells in a dose-dependent manner. Also, the compound causes significant microtubule disruption in TNBC cells. Subsequently, 1 restricted the cell migration leading to the concomitant increase in expression of cleaved caspase and PARP.

12.
J Pept Sci ; 26(4-5): e3243, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32153090

RESUMEN

The present work describes the synthesis and characterization of α/γ hybrid peptides, Boc-Phe-γ4 -Phe-Val-OMe, P1; Boc-Ala-γ4 -Phe-Val-OMe, P2; and Boc-Leu-γ4 -Phe-Val-OMe, P3 together with the formation of self-assembled structures formed by these hybrid peptides in dimethyl sulfoxide (DMSO)/water (1:1). The self-assembled structures were characterized by infrared (IR) spectroscopy, circular dichroism (CD), and scanning electron microscopy (SEM). Further, α/γ hybrid peptide self-assembled structures were evaluated for antibacterial properties. Among all, the self-assembled peptide P1 exhibited the antimicrobial activity against Escherichia coli and Klebsiella pneumoniae, while self-assembled peptide P3 inhibited the biofilms of Salmonella typhimurium and Pseudomonas aeruginosa. In this study, we have shown the significance of self-assembled structures formed from completely hydrophobic α/γ hybrid peptides in exploring the antibacterial properties together with biofilm inhibition.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Péptidos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Péptidos/síntesis química , Péptidos/química , Estructura Secundaria de Proteína
13.
ACS Omega ; 4(24): 20435-20442, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31858026

RESUMEN

Modifications at the carbohydrate moiety of neoandrographolide, isolated from the medicinal plant Andrographis paniculata, result in more potent and less toxic derivatives, namely, 4',6'-benzylidene neoandrographolide (2b) and 4'6'-p-methoxybenzylidene neoandrographolide (2c). These showed improved cytotoxicity against SW-620, PC-3, and A549 cancer cell lines. Nuclear morphology studies were conducted on compound 2b by 4',6-diamidino-2-phenylidole staining and detection of intracellular reactive oxygen species (ROS) accumulation. It showed an increase in the generation of cellular and mitochondrial ROS level. The probable relation of B-cell lymphoma-2 (Bcl-2, an apoptosis inhibitor) to B-cell lymphoma-2-associated X protein (Bax, an apoptosis promoter) ratio with caspase-3 (apoptosis coordination enzyme) in the colon cancer cell line SW-620 was investigated, and it was discovered that upon 2b treatment, the expression of caspase-3 Bax increased remarkably. However, in 2b-treated cells, the expression of Bcl-2 was downregulated as compared to untreated cells.

15.
Microbiol Res ; 207: 196-202, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29458855

RESUMEN

A highly active actinobacterial strain isolated from untapped areas of Northwestern Himalayas and characterised as Streptomyces puniceus strain AS13 by 16S rRNA gene sequencing was selected for production of bioactive metabolites. The bioassay-guided fractionation of microbial cultured ethyl acetate extract of the strain, led to isolation of macrotetrolide compound 1 (Dinactin) and compound 2 (1-(2,4-dihydroxy-6-methylphenyl)-ethanone). Structures of the isolated compounds were elucidated by [corrected] interpretation of NMR and other spectroscopic data including HR-ESI-MS, FT-IR. These compounds are reported for first time from Streptomyces Puniceus. Compound 1 exhibited strong anti-microbial activity against all tested bacterial pathogens including Mycobacterium tuberculosis. The MIC values of compound 1 against Gram negative and Gram positive bacterial pathogens ranged between 0.019 - 0.156µgml-1 and 1µgml-1 against Mycobacterium tuberculosis H37Rv. Dinactin exhibited marked anti-tumor potential with IC50 of 1.1- 9.7µM in various human cancerous cell lines and showed least cytotoxicity (IC50∼80µM) in normal cells (HEK-293). Dinactin inhabited cellular proliferation in cancer cells, reduced their clonogenic survival as validated by clonogenic assay and also inhabited cell migration and invasion characteristics in colon cancer (HCT-116) cells. Our results expressed the antimicrobial potential of dinactin and also spotted its prospective as an antitumor antibiotic.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Macrólidos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Streptomyces/metabolismo , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Línea Celular Tumoral , Células HCT116 , Células HEK293 , Humanos , Macrólidos/metabolismo , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S/genética , Streptomyces/clasificación , Streptomyces/genética
16.
Eur J Med Chem ; 145: 511-523, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29335212

RESUMEN

A library of 28 analogs of bavachinin including aliphatic and aromatic ethers, epoxide, chalcone, oxime, semicarbazide, oxime ether and triazole derivatives have been synthesized and evaluated for cytotoxicity against four different human cancer cell lines. Bio-evaluation studies exhibited better cytotoxic profile for many analogs compare to bavachinin. Best results were observed for a 1,2,3-triazole analog (17i) with IC50 values 7.72, 16.08, 7.13 and 11.67 µM against lung (A549), prostate (PC-3), colon (HCT-116) and breast (MCF-7) cancer cell lines respectively. This analog showed three and four fold improvement in cytotoxicity against HCT-116 and A549 cell lines than parent molecule (1). Structure activity relationship (SAR) study for all synthesized analogs was carried out. Further, mechanistic study of the lead molecule (17i) revealed that it inhibits colony formation and in vitro migration of human colon cancer cells (HCT-116). Also, it induced the morphological changes and mediated the apoptotic cell death of HCT-116 cells with perturbance in mitochondrial membrane potential (MMP) and PARP cleavage.


Asunto(s)
Antineoplásicos/farmacología , Flavonoides/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Flavonoides/síntesis química , Flavonoides/química , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
17.
Pharm Res ; 35(1): 9, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29294212

RESUMEN

PURPOSE: To establish a platform for the possibility of effective and safe delivery of Temozolomide (TMZ) to brain via surface engineered (polyamidoamine) PAMAM dendrimer for the treatment of glioblastoma. METHODS: The present study aims to investigate the efficacy of PAMAM-chitosan conjugate based TMZ nanoformulation (PCT) against gliomas in vitro as well as in vivo. The prepared nanoconjugated formulation was characterized by 1H NMR, FT-IR spectroscopy and for surface morphological parameters. The reported approach was also designed in such a way to ensure toxicity before in vivo delivery through conducting the hemolytic study. RESULT: Surface morphology was found as per nanoformulation via size, pdi and zeta potential measurement. PCT was more efficacious in terms of IC50 values compared to pure TMZ against U-251 and T-98G glioma cell lines. The in vivo pharmacokinetic parameters proved sustained release fashion such as half-life (t1/2) of 22.74 h (PCT) rather than15.35 h (TMZ) only. Higher concentration was found in heart than brain in bio-distribution studies. This study exhibits the potential applicability of dendrimer and CS in improving the anticancer activity and delivery of TMZ to brain. CONCLUSION: The attractive ex vivo cytotoxicity against two glioma cell lines; U-251 and T-98G and phase solubility studies of TMZ revealed remarkable results. In vivo studies of prepared nanoformulation were significant and promising that explored the double concentration of TMZ in brain due to surface functionality of dendrimer. The reported work is novel and non- obvious as none of such approaches using chitosan anchored dendrimer for TMZ delivery has been reported earlier.


Asunto(s)
Quitosano/síntesis química , Dacarbazina/análogos & derivados , Dendrímeros/química , Glioma/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica/métodos , Dacarbazina/administración & dosificación , Dacarbazina/química , Dacarbazina/farmacocinética , Dacarbazina/uso terapéutico , Dendrímeros/síntesis química , Liberación de Fármacos , Estabilidad de Medicamentos , Semivida , Humanos , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Rastreo/métodos , Tamaño de la Partícula , Ratas , Ratas Wistar , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Propiedades de Superficie , Temozolomida , Distribución Tisular/efectos de los fármacos
18.
J Ethnopharmacol ; 211: 295-310, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-28962889

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia is a miraculous ayurvedic herb used in the treatment of innumerable diseases such as diabetes, gonorrhea, secondary syphilis, anaemia, rheumatoid arthritis, dermatological diseases, cancer, gout, jaundice, asthma, leprosy, in the treatment of bone fractures, liver & intestinal disorders, purifies the blood, gives new life to the whole body; (rejuvenating herb) and many more. Recent studies have revealed the anticancer potential of this plant but not much work has been done on the anticancer chemical constituents actually responsible for its amazing anticancer effects. This prompted us to investigate this plant further for new potent anticancer molecules. AIM OF THE STUDY: The present study was designed to isolate and identify new promising anticancer candidates from the aqueous alcoholic extract of T. cordifolia using bioassay-guided fractionation. MATERIALS AND METHODS: The structures of the isolated compounds were determined on the basis of spectroscopic data interpretation and that of new potent anticancer molecule, TC-2 was confirmed by a single-crystal X-ray crystallographic analysis of its corresponding acetate. The in vitro anti-cancer activity of TC-2 was evaluated by SRB assay and the autophagic activity was investigated by immunofluorescence microscopy. Annexin-V FITC and PI dual staining was applied for the detection of apoptosis. The studies on Mitochondrial Membrane potential and ROS (Reactive oxygen species) production were also done. RESULTS: Bioassay guided fractionation and purification of the aqueous alcoholic stem extract of Tinospora cordifolia led to the isolation of a new clerodane furano diterpene glycoside (TC-2) along with five known compounds i.e. cordifolioside A (ß-D-Glucopyranoside,4-(3-hydroxy-1-propenyl)- 2,6-dimethoxyphenyl 3-O-D-apio-ß-D-furanosyl) (TC-1), ß-Sitosterol(TC-3), 2ß,3ß:15,16-Diepoxy- 4α, 6ß-dihydroxy-13(16),14-clerodadiene-17,12:18,1-diolide (TC-4), ecdysterone(TC-5) and tinosporoside(TC-6). TC-2 emerged as a potential candidate for the treatment of colon cancer. CONCLUSION: The overall study on the bioassay guided isolation of T.cordifolia identified and isolated a new clerodane furano diterpenoid that exhibited anticancer activity via induction of mitochondria mediated apoptosis and autophagy in HCT116 cells. We have reported a promising future candidate for treating colon cancer.


Asunto(s)
Diterpenos de Tipo Clerodano/farmacología , Glicósidos/farmacología , Tinospora , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Células HCT116 , Humanos , Tallos de la Planta
19.
Anticancer Agents Med Chem ; 18(1): 57-73, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28925877

RESUMEN

AIMS: The current study is focused on the design and synthesis of 4-aryl/heteroaryl-4H-fused pyrans as anti-proliferative agents. All the synthesized molecules were screened against a panel of human carcinoma cell lines. DESCRIPTION: Significant inhibition was exhibited by the compounds against HCT-116 (Colon) and PC-3 (Prostate) cell lines while A-549 (Lung) cell lines, MiaPaCa-2 (Pancreatic) cell lines and HL-60 (Leukemia Cancer) cell lines were almost resistant to the exposure of the test compounds. Compound FP-(v)n displayed noteworthy cytotoxicity towards HCT-116 malignant cells with the IC50 value of 0.67 µM. It induces apoptosis as revealed by several biological endpoints like apoptotic body formation, through DAPI staining, phase contrast microscopy and mitochondrial membrane potential loss. Moreover FP-(v)n is a potent apoptotic inducer confirmed by cell cycle arrest and ROS generation. The cell phase distribution studies indicate an augment from 4.94 % (control sample) to 39.68 % (sample treated with 1.5 µM compound FP-(v)n) in the apoptotic population. Compound FP-(v)n inhibits the tumor growth in Ehrlich ascites carcinoma (EAC), Ehrlich Tumor (ET, solid) and sarcoma-180 (solid) mice models. Additionally, it was established to be non-toxic at maximum tolerated dose of 1000 mg/kg in acute oral toxicity in Swiss-albino mice. CONCLUSION: The current study provides an insight into anti-cancer potential of FP-(v)n, which might be valuable in the treatment of tumor.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Piranos/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Piranos/síntesis química , Piranos/química , Relación Estructura-Actividad
20.
Eur J Med Chem ; 135: 517-530, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28500966

RESUMEN

Different benzylidene derivatives (15a-o and 16a-o) of betulinic acid were designed and synthesized in an effort to develop potent anticancer agents. All the synthesized derivatives along with betulinic acid were evaluated for cytotoxicity against a panel of five different human cancer cell lines A-549 (Lung), PC-3 (Prostate), HCT 116 (Colon), MCF-7 (Breast) and MIA PaCa-2 (Pancreatic) using SRB assay. Pharmacological results showed that compounds 15b, 15c, 15i, 15k, 16a-c and 16l were found to have promising cytotoxic profile against various cancer cell lines tested (IC50 1-2 µM). Best results were observed for compound 16c with IC50 values 1.5, 1.6, 1.36, 3.5 and 3.2 µM against A-549, PC-3, HCT 116, MCF-7 and MIA PaCa-2 cell lines, respectively. Mechanistic study of compound 16c revealed that it inhibits the colony formation and restrict the migration in HCT 116 cells in vitro. It also induces growth arrest with characterized morphological changes and loss of mitochondrial membrane potential (MMP) in a concentration dependent manner.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bencilideno/farmacología , Citotoxinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Compuestos de Bencilideno/síntesis química , Compuestos de Bencilideno/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citotoxinas/síntesis química , Citotoxinas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...