Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2303576, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329892

RESUMEN

Skeletal muscle injuries including volumetric muscle loss (VML) lead to excessive tissue scarring and permanent functional disability. Despite its high prevalence, there is currently no effective treatment for VML. Bioengineering interventions such as biomaterials that fill the VML defect to support cell and tissue growth are a promising therapeutic strategy. However, traditional biomaterials developed for this purpose lack the pore features needed to support cell infiltration. The present study investigates for the first time, the impact of granular hydrogels on muscle repair - hypothesizing that their flowability will permit conformable filling of the defect site and their inherent porosity will support the invasion of native myogenic cells, leading to effective muscle repair. Small and large microparticle fragments are prepared from photocurable hyaluronic acid polymer via extrusion fragmentation and facile size sorting. In assembled granular hydrogels, particle size and degree of packing significantly influence pore features, rheological behavior, and injectability. Using a mouse model of VML, it is demonstrated that, in contrast to bulk hydrogels, granular hydrogels support early-stage (satellite cell invasion) and late-stage (myofiber regeneration) muscle repair processes. Together, these results highlight the promising potential of injectable and porous granular hydrogels in supporting endogenous repair after severe muscle injury.

2.
Cells Tissues Organs ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38219727

RESUMEN

BACKGROUND: Volumetric muscle loss (VML) causes pain and disability in patients who sustain traumatic injury from invasive surgical procedures, vehicle accidents, and battlefield wounds. Clinical treatment of VML injuries is challenging and although options such as free-flap autologous grafting exist, patients inevitably develop excessive scarring and fatty infiltration, leading to muscle weakness and reduced quality of life. SUMMARY: New bioengineering approaches, including cell therapy, drug delivery, and biomaterial implantation, have emerged as therapies to restore muscle function and structure to pre-injury levels. Of these, acellular biomaterial implants have attracted wide interest owing to their broad potential design space and high translational potential as medical devices. Implantable biomaterials fill the VML defect and create a conduit that permits the migration of regenerative cells from intact muscle tissue to the injury site. Invading cells and regenerating myofibers are sensitive to the biomaterial's structural and biochemical properties, which can play instructive roles in guiding cell fate and organization into functional tissue. KEY MESSAGES: Many diverse biomaterials have been developed for skeletal muscle regeneration with variations in biophysical and biochemical properties and while many have been tested in vitro, few have proven their regenerative potential in clinically relevant in vivo models. Here, we provide an overview of recent advances in the design, fabrication, and application of acellular biomaterials made from synthetic or natural materials for the repair of VML defects. We specifically focus on biomaterials with rationally designed structural (i.e., porosity, topography, alignment) and biochemical (i.e., proteins, peptides, growth factors) components, highlighting their regenerative effects in clinically relevant VML models.

3.
NPJ Regen Med ; 8(1): 19, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019910

RESUMEN

Skeletal muscle regeneration requires the coordinated interplay of diverse tissue-resident- and infiltrating cells. Fibro-adipogenic progenitors (FAPs) are an interstitial cell population that provides a beneficial microenvironment for muscle stem cells (MuSCs) during muscle regeneration. Here we show that the transcription factor Osr1 is essential for FAPs to communicate with MuSCs and infiltrating macrophages, thus coordinating muscle regeneration. Conditional inactivation of Osr1 impaired muscle regeneration with reduced myofiber growth and formation of excessive fibrotic tissue with reduced stiffness. Osr1-deficient FAPs acquired a fibrogenic identity with altered matrix secretion and cytokine expression resulting in impaired MuSC viability, expansion and differentiation. Immune cell profiling suggested a novel role for Osr1-FAPs in macrophage polarization. In vitro analysis suggested that increased TGFß signaling and altered matrix deposition by Osr1-deficient FAPs actively suppressed regenerative myogenesis. In conclusion, we show that Osr1 is central to FAP function orchestrating key regenerative events such as inflammation, matrix secretion and myogenesis.

4.
Adv Mater ; 34(28): e2202261, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35510317

RESUMEN

The incorporation of a secondary network into traditional single-network hydrogels can enhance mechanical properties, such as toughness and loading to failure. These features are important for many applications, including as biomedical materials; however, the processing of interpenetrating polymer network (IPN) hydrogels is often limited by their multistep fabrication procedures. Here, a one-pot scheme for the synthesis of biopolymer IPN hydrogels mediated by the simultaneous crosslinking of two independent networks with light, namely: i) free-radical crosslinking of methacrylate-modified hyaluronic acid (HA) to form the primary network and ii) thiol-ene crosslinking of norbornene-modified HA with thiolated guest-host assemblies of adamantane and ß-cyclodextrin to form the secondary network, is reported. The mechanical properties of the IPN hydrogels are tuned by changing the network composition, with high water content (≈94%) hydrogels exhibiting excellent work of fracture, tensile strength, and low hysteresis. As proof-of-concept, the IPN hydrogels are implemented as low-viscosity Digital Light Processing resins to fabricate complex structures that recover shape upon loading, as well as in microfluidic devices to form deformable microparticles. Further, the IPNs are cytocompatible with cell adhesion dependent on the inclusion of adhesive peptides. Overall, the enhanced processing of these IPN hydrogels will expand their utility across applications.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Materiales Biocompatibles/química , Adhesión Celular , Ácido Hialurónico/química , Hidrogeles/química , Polímeros/química
5.
Cell Stem Cell ; 29(5): 678-691, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35413278

RESUMEN

The recapitulation of complex microenvironments that regulate cell behavior during development, disease, and wound healing is key to understanding fundamental biological processes. In vitro, multicellular morphogenesis, organoid maturation, and disease modeling have traditionally been studied using either non-physiological 2D substrates or 3D biological matrices, neither of which replicate the spatiotemporal biochemical and biophysical complexity of biology. Here, we provide a guided overview of the recent advances in the programming of synthetic hydrogels that offer precise control over the spatiotemporal properties within cellular microenvironments, such as advances in the control of cell-driven remodeling, bioprinting, or user-defined manipulation of properties (e.g., via light irradiation).


Asunto(s)
Bioimpresión , Hidrogeles , Microambiente Celular , Hidrogeles/química , Organoides , Ingeniería de Tejidos , Cicatrización de Heridas
6.
ACS Biomater Sci Eng ; 8(4): 1427-1442, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35330993

RESUMEN

Granular hydrogels are formed through the packing of hydrogel microparticles and are emerging for various biomedical applications, including as inks for 3D printing, substrates to study cell-matrix interactions, and injectable scaffolds for tissue repair. Granular hydrogels are suited for these applications because of their unique properties including inherent porosity, shear-thinning and self-healing behavior, and tunable design. The characterization of their material properties and biological response involves technical considerations that are unique to modular systems like granular hydrogels. Here, we describe detailed methods that can be used to quantitatively characterize the rheological behavior and porosity of granular hydrogels using reagents, tools, and equipment that are typically available in biomedical engineering laboratories. In addition, we detail methods for 3D cell invasion assays using multicellular spheroids embedded within granular hydrogels and describe steps to quantify features of cell outgrowth (e.g., endothelial cell sprouting) using standard image processing software. To illustrate these methods, we provide examples where features of granular hydrogels such as the size of hydrogel microparticles and their extent of packing during granular hydrogel formation are modulated. Our intent with this resource is to increase accessibility to granular hydrogel technology and to facilitate the investigation of granular hydrogels for biomedical applications.


Asunto(s)
Hidrogeles , Impresión Tridimensional , Células Endoteliales , Hidrogeles/química , Porosidad , Reología
7.
Small ; 18(36): e2201115, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35315233

RESUMEN

Granular hydrogels are an exciting class of microporous and injectable biomaterials that are being explored for many biomedical applications, including regenerative medicine, 3D printing, and drug delivery. Granular hydrogels often possess low mechanical moduli and lack structural integrity due to weak physical interactions between microgels. This has been addressed through covalent inter-particle crosslinking; however, covalent crosslinking often occurs through temporal enzymatic methods or photoinitiated reactions, which may limit injectability and material processing. To address this, a hyaluronic acid (HA) granular hydrogel is developed with dynamic covalent (hydrazone) inter-particle crosslinks. Extrusion fragmentation is used to fabricate microgels from photocrosslinkable norbornene-modified HA, additionally modified with either aldehyde or hydrazide groups. Aldehyde and hydrazide-containing microgels are mixed and jammed to form adhesive granular hydrogels. These granular hydrogels possess enhanced mechanical integrity and shape stability over controls due to the covalent inter-particle bonds, while maintaining injectability due to the dynamic hydrazone bonds. The adhesive granular hydrogels are applied to 3D printing, which allows the printing of structures that are stable without any further post-processing. Additionally, the authors demonstrate that adhesive granular hydrogels allow for cell invasion in vitro. Overall, this work demonstrates the use of dynamic covalent inter-particle crosslinking to enhance injectable granular hydrogels.


Asunto(s)
Hidrogeles , Microgeles , Adhesivos , Aldehídos , Ácido Hialurónico/química , Hidrazinas , Hidrazonas , Hidrogeles/química
8.
Adv Mater ; 34(12): e2109194, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34932833

RESUMEN

Granular hydrogels have emerged as a new class of injectable and porous biomaterials that improve integration with host tissue when compared to solid hydrogels. Granular hydrogels are typically prepared using spherical particles and this study considers whether particle shape (i.e., isotropic spheres vs anisotropic rods) influences granular hydrogel properties and cellular invasion. Simulations predict that anisotropic rods influence pore shape and interconnectivity, as well as bead transport through granular assemblies. Photo-cross-linkable norbornene-modified hyaluronic acid is used to produce spherical and rod-shaped particles using microfluidic droplet generators and formed into shear-thinning and self-healing granular hydrogels, with particle shape influencing mechanics and injectability. Rod-shaped particles form granular hydrogels that have anisotropic and interconnected pores, with pore size and number influenced by particle shape and degree of packing. Robust in vitro sprouting of endothelial cells from embedded cellular spheroids is observed with rod-shaped particles, including higher sprouting densities and sprout lengths when compared to hydrogels with spherical particles. Cell and vessel invasion into granular hydrogels when injected subcutaneously in vivo are significantly greater with rod-shaped particles, whereas a gradient of cellularity is observed with spherical particles. Overall, this work demonstrates potentially superior functional properties of granular hydrogels with rod-shaped particles for tissue repair.


Asunto(s)
Células Endoteliales , Hidrogeles , Materiales Biocompatibles/farmacología , Ácido Hialurónico , Porosidad
9.
Acta Biomater ; 133: 1-3, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610878
10.
ACS Biomater Sci Eng ; 7(9): 4269-4281, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-33591726

RESUMEN

Bulk hydrogels traditionally used for tissue engineering and drug delivery have numerous limitations, such as restricted injectability and a nanoscale porosity that reduces cell invasion and mass transport. An evolving approach to address these limitations is the fabrication of hydrogel microparticles (i.e., "microgels") that can be assembled into granular hydrogels. There are numerous methods to fabricate microgels; however, the influence of the fabrication technique on granular hydrogel properties is unexplored. Herein, we investigated the influence of three microgel fabrication techniques (microfluidic devices (MD), batch emulsions (BE), and mechanical fragmentation by extrusion (EF)) on the resulting granular hydrogel properties (e.g., mechanics, porosity, and injectability). Hyaluronic acid (HA) modified with various reactive groups (i.e., norbornenes (NorHA), pentenoates (HA-PA), and methacrylates (MeHA)) were used to form microgels with an average diameter of ∼100 µm. The MD method resulted in homogeneous spherical microgels, the BE method resulted in heterogeneous spherical microgels, and the EF method resulted in heterogeneous polygonal microgels. Across the various reactive groups, microgels fabricated with the MD and BE methods had lower functional group consumption when compared to microgels fabricated with the EF method. When microgels were jammed into granular hydrogels, the storage modulus (G') of EF granular hydrogels (∼1000-3000 Pa) was consistently an order of magnitude higher than G' for MD and BE granular hydrogels (∼50-200 Pa). Void space was comparable across all groups, although EF granular hydrogels exhibited an increased number of pores and decreased average pore size when compared to MD and BE granular hydrogels. Furthermore, granular hydrogel properties were tuned by varying the amount of cross-linker used during microgel fabrication. Lastly, granular hydrogels were injectable across formulations due to their general shear-thinning and self-healing properties. Taken together, this work thoroughly characterizes the influence of the microgel fabrication technique on granular hydrogel properties to inform the design of future systems for biomedical applications.


Asunto(s)
Microgeles , Ácido Hialurónico , Hidrogeles , Ingeniería de Tejidos
11.
Biomater Biosyst ; 1: 100008, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36825161

RESUMEN

Granular hydrogels, formed by the packing of hydrogel microparticles (microgels), are emerging to support the endogenous repair of injured tissues by guiding local cell behavior. In contrast to traditional pre-formed scaffolds and bulk hydrogels, granular hydrogels offer exciting features such as injectability, inherent porosity, and the potential delivery of biologics. Further, granular hydrogel design allows for the tuning of constituent microgel properties and the mixing of discrete microgel populations. This modularity allows the creation of multifunctional granular hydrogels that promote cell recruitment, guide extracellular matrix deposition, and stimulate tissue growth to drive endogenous repair.

12.
Macromol Biosci ; 20(4): e1900364, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32077631

RESUMEN

Adipose tissue engineering aims to provide solutions to patients who require tissue reconstruction following mastectomies or other soft tissue trauma. Mesenchymal stromal cells (MSCs) robustly differentiate into the adipogenic lineage and are attractive candidates for adipose tissue engineering. This work investigates whether pore size modulates adipogenic differentiation of MSCs toward identifying optimal scaffold pore size and whether pore size modulates spatial infiltration of adipogenically differentiated cells. To assess this, extrusion-based 3D printing is used to fabricate photo-crosslinkable gelatin-based scaffolds with pore sizes in the range of 200-600 µm. The adipogenic differentiation of MSCs seeded onto these scaffolds is evaluated and robust lipid droplet formation is observed across all scaffold groups as early as after day 6 of culture. Expression of adipogenic genes on scaffolds increases significantly over time, compared to TCP controls. Furthermore, it is found that the spatial distribution of cells is dependent on the scaffold pore size, with larger pores leading to a more uniform spatial distribution of adipogenically differentiated cells. Overall, these data provide first insights into the role of scaffold pore size on MSC-based adipogenic differentiation and contribute toward the rational design of biomaterials for adipose tissue engineering in 3D volumetric spaces.


Asunto(s)
Adipocitos/efectos de los fármacos , Materiales Biocompatibles/farmacología , Gelatina/química , Células Madre Mesenquimatosas/efectos de los fármacos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/efectos de la radiación , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Gelatina/efectos de la radiación , Expresión Génica , Humanos , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Porosidad , Cultivo Primario de Células , Impresión Tridimensional , Rayos Ultravioleta
13.
Biomaterials ; 230: 119639, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31776021

RESUMEN

Cells encounter complex environments in vivo where they interact with the extracellular matrix, neighboring cells, and soluble cues, which together influence their fate and function. However, the interplay of these interactions and their collective impact on the regenerative effects of mesenchymal stromal cells (MSCs) remains insufficiently explored. Here, we show that 3D culture in microporous (~125 µm) hydrogels that passively promote cell-cell interactions sensitizes MSCs to growth factors, particularly to IGF-1. IGF-1 enhances MSC paracrine secretion activity, and application of secreted factors to myoblasts potently stimulates their migration and differentiation. In contrast, the paracrine activity of MSCs encapsulated in nanoporous (~10 nm) hydrogels remain unchanged. Blocking N-cadherin on MSCs abrogates the stimulatory effects of IGF-1 in microporous but not nanoporous hydrogels. The role of N-cadherin in regulating MSC function is further clarified by functionalizing alginates with the HAVDI peptide sequence that is derived from the extracellular domain of N-cadherin and that acts to mimic cell-cell interactions. MSCs encapsulated in nanoporous HAVDI-gels, but not in gels functionalized with a scrambled sequence, show heightened paracrine activity in response to IGF-1. These findings reveal how interactions with the matrix, neighboring cells, and soluble factors impact and maximize the regenerative potential of MSCs.


Asunto(s)
Células Madre Mesenquimatosas , Diferenciación Celular , Hidrogeles , Mioblastos , Péptidos
14.
Mater Sci Eng C Mater Biol Appl ; 104: 109911, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31499986

RESUMEN

Bone defect repair can benefit from local delivery of mesenchymal stromal cells (MSCs). However, local harsh environmental conditions after injury may necessitate a cell therapy strategy that shields MSCs initially and releases them locally over time. This may be possible by using biomaterials that exhibit stimuli-responsive degradability, such as oxidized alginate hydrogels that undergo hydrolytic degradation. However, it remains unknown whether varying encapsulation periods compromise MSC osteogenic differentiation capacity after release. To address this, we cultured MSCs in 3D alginate beads with tunable degradability before characterizing the function of released cells. Alginates were oxidized to different degrees (2%, 3%, and 4%) to achieve distinct rates of degradation (days to weeks), then functionalized with RGD peptides to enable cell adhesion, and modified additionally with 6-aminofluorescin to enable fluorescence-based detection. Bead morphology, degradation kinetics, cell morphology, and cell release kinetics were monitored over time. Cells that were released from the beads were stimulated to differentiate into the osteogenic lineage. Our results indicate that MSCs released from all bead groups retained a strong ability to deposit mineralized matrix under osteogenic differentiation conditions. These findings provide the basis for designing and implementing biomaterial-based strategies for the in-situ temporal delivery of potent MSCs at bone defect sites.


Asunto(s)
Alginatos/farmacología , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Oxidación-Reducción
15.
J Mater Chem B ; 7(19): 3100-3108, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31441462

RESUMEN

Gelatin is frequently used in various biomedical applications. However, gelatin is generally extracted from an animal source, which can result in issues with reproducibility as well as pathogen transmittance. Therefore, we have investigated the potential of a recombinant peptide based on collagen I (RCPhC1) for tissue engineering applications and more specifically for adipose tissue regeneration. In the current paper, RCPhC1 was functionalized with photo-crosslinkable methacrylamide moieties to enable subsequent UV-induced crosslinking in the presence of a photo-initiator. The resulting biomaterial (RCPhC1-MA) was characterized by evaluating the crosslinking behaviour, the mechanical properties, the gel fraction, the swelling properties and the biocompatibility. The obtained results were compared with the data obtained for methacrylamide-modified gelatin (Gel-MA). The results indicated that the properties of RCPhC1-MA networks are comparable to those of animal-derived Gel-MA. RCPhC1-MA is thus an attractive synthetic alternative for animal-derived Gel-MA and is envisioned to be applicable for a wide range of tissue engineering purposes.


Asunto(s)
Materiales Biocompatibles/química , Colágeno/química , Ingeniería de Tejidos/métodos , Humanos
16.
J Cachexia Sarcopenia Muscle ; 10(3): 501-516, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30843380

RESUMEN

Diseases that jeopardize the musculoskeletal system and cause chronic impairment are prevalent throughout the Western world. In Germany alone, ~1.8 million patients suffer from these diseases annually, and medical expenses have been reported to reach 34.2bn Euros. Although musculoskeletal disorders are seldom fatal, they compromise quality of life and diminish functional capacity. For example, musculoskeletal disorders incur an annual loss of over 0.8 million workforce years to the German economy. Among these diseases, traumatic skeletal muscle injuries are especially problematic because they can occur owing to a variety of causes and are very challenging to treat. In contrast to chronic muscle diseases such as dystrophy, sarcopenia, or cachexia, traumatic muscle injuries inflict damage to localized muscle groups. Although minor muscle trauma heals without severe consequences, no reliable clinical strategy exists to prevent excessive fibrosis or fatty degeneration, both of which occur after severe traumatic injury and contribute to muscle degeneration and dysfunction. Of the many proposed strategies, cell-based approaches have shown the most promising results in numerous pre-clinical studies and have demonstrated success in the handful of clinical trials performed so far. A number of myogenic and non-myogenic cell types benefit muscle healing, either by directly participating in new tissue formation or by stimulating the endogenous processes of muscle repair. These cell types operate via distinct modes of action, and they demonstrate varying levels of feasibility for muscle regeneration depending, to an extent, on the muscle injury model used. While in some models the injury naturally resolves over time, other models have been developed to recapitulate the peculiarities of real-life injuries and therefore mimic the structural and functional impairment observed in humans. Existing limitations of cell therapy approaches include issues related to autologous harvesting, expansion and sorting protocols, optimal dosage, and viability after transplantation. Several clinical trials have been performed to treat skeletal muscle injuries using myogenic progenitor cells or multipotent stromal cells, with promising outcomes. Recent improvements in our understanding of cell behaviour and the mechanistic basis for their modes of action have led to a new paradigm in cell therapies where physical, chemical, and signalling cues presented through biomaterials can instruct cells and enhance their regenerative capacity. Altogether, these studies and experiences provide a positive outlook on future opportunities towards innovative cell-based solutions for treating traumatic muscle injuries-a so far unmet clinical need.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Desarrollo de Músculos/fisiología , Músculo Esquelético/lesiones , Enfermedades Musculares/terapia , Regeneración , Ensayos Clínicos como Asunto , Humanos , Músculo Esquelético/fisiopatología , Enfermedades Musculares/complicaciones , Enfermedades Musculares/fisiopatología , Calidad de Vida , Traumatismos de los Tejidos Blandos/complicaciones , Traumatismos de los Tejidos Blandos/fisiopatología , Traumatismos de los Tejidos Blandos/terapia , Resultado del Tratamiento
17.
ACS Biomater Sci Eng ; 5(10): 5348-5358, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33464076

RESUMEN

Cell encapsulation in confining 3D hydrogels typically prevents encapsulated cells from spreading and establishing cell-cell contacts. Interactions with neighboring cells or with the extracellular matrix (ECM) influence the paracrine activity of mesenchymal stromal cells (MSCs), but how these interactions are regulated by structural properties of biomaterial scaffolds remains insufficiently explored. Here, we describe the use of extrusion-based 3D printing to fabricate acellular, gelatin-based scaffolds with programmed strut spacings of 400 (small), 500 (medium), and 600 µm (large). These scaffolds showed similar effective Young's moduli in the range of 2-5 kPa, and varied based on average pore size which ranged from ∼200 µm (small pore: SP) through ∼302 µm (medium pore: MP) to ∼382 µm (large pore: LP). When seeded with MSCs, pore size guided cell distribution on the scaffolds, with smaller pores preventing cell infiltration, medium ones causing cells to aggregate in between struts, and large ones causing cells to flow through after attachment on the struts. These changes in cell distribution regulated cell-cell and cell-matrix interactions at the gene level, as assessed by pathway focused PCR arrays. Medium pore size scaffolds stimulated the highest paracrine secretion of a panel of angiogenic cytokines. This enhancement of paracrine activity substantially improved endothelial cell migration in a chemotaxis assay, increased single cell migration kinetics such as velocity, and stimulated the formation of robust tubular structures. Together, these findings not only provide new insights on cellular interactions in scaffold environments but also demonstrate how 3D biomaterial design can instruct and enhance the regenerative paracrine activities of MSCs.

18.
J Biomed Mater Res A ; 106(11): 2827-2837, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30281904

RESUMEN

Vascularization of the fracture site and cell-mediated deposition of the mineralized matrix are crucial determinants for successful bone regeneration after injury. Ceramic biomaterials such as bioactive glasses (BAGs) that release bioactive ions have shown promising results in bone defect regeneration. However, it remains unclear how the dosage and composition of bioactive ions influence the angiogenic and osteogenic behavior of primary human mesenchymal stromal cells (MSCs). Here, we show that exposure to ionic dissolution products from 1393 and 45S5 BAGs can evoke distinct angiogenic and osteogenic responses from primary MSCs in a dose- and composition-dependent manner. Significantly higher concentrations of the pro-angiogenic factors VEGF, HGF, PIGF, angiopoietin, and angiogenin were detected in conditioned media (CM) from MSCs exposed to 45S5, but not 1393, BAGs. Application of this CM to human umbilical vein endothelial cells (HUVECs) resulted in robust 2D tube formation in vitro. Osteogenic differentiation of MSCs was assessed by gene expression analysis and mineralization assays. Low concentrations (0.1% w/v) of 1393 BAGs significantly enhanced the gene expression of RUNX2 and ALP and induced an earlier onset of matrix mineralization compared to all other groups. We further tested whether simultaneous exposure to both BAGs would improve both angiogenic secretion and osteogenic differentiation of MSCs, and did not find evidence to support this hypothesis. Our results provide evidence of BAG composition-dependent enhancement of primary human MSCs' regenerative function, besides also underlining the importance of an in vitro evaluation of the dose-response relationship to translate BAG based approaches into safe and effective clinical therapies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2827-2837, 2018., 2018.


Asunto(s)
Materiales Biocompatibles/farmacología , Cerámica/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Vidrio , Humanos , Iones/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos
19.
Sci Rep ; 8(1): 13877, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30224659

RESUMEN

Bioprinting is a new technology, which arranges cells with high spatial resolution, but its potential to create models for viral infection studies has not yet been fully realized. The present study describes the optimization of a bioink composition for extrusion printing. The bioinks were biophysically characterized by rheological and electron micrographic measurements. Hydrogels consisting of alginate, gelatin and Matrigel were used to provide a scaffold for a 3D arrangement of human alveolar A549 cells. A blend containing 20% Matrigel provided the optimal conditions for spatial distribution and viability of the printed cells. Infection of the 3D model with a seasonal influenza A strain resulted in widespread distribution of the virus and a clustered infection pattern that is also observed in the natural lung but not in two-dimensional (2D) cell culture, which demonstrates the advantage of 3D printed constructs over conventional culture conditions. The bioink supported viral replication and proinflammatory interferon release of the infected cells. We consider our strategy to be paradigmatic for the generation of humanized 3D tissue models by bioprinting to study infections and develop new antiviral strategies.


Asunto(s)
Bioimpresión/métodos , Virus de la Influenza A/fisiología , Tinta , Impresión Tridimensional , Células A549 , Supervivencia Celular , Humanos , Hidrogeles , Modelos Biológicos , Reología , Andamios del Tejido , Replicación Viral
20.
J Biomed Mater Res A ; 105(10): 2772-2782, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28571113

RESUMEN

Bioactive glasses (BAGs) are highly interesting materials for bone regeneration applications in orthopedic and dental defects. It is quite well known that ionic release from BAGs influences cell behavior and function. Mindful of the clinical scenario, we hypothesized that local cell populations might additionally physically interact with the implanted BAG particles and respond differently than to just the ionic stimuli. We therefore studied the biological effect of two BAG types (45S5 and 1393) applied to human mesenchymal stromal cells (hMSCs) in three distinct presentation modes: (a) direct contact; and to dissolution products in (b) 2D, and (c) 3D culture. We furthermore investigated how the dose-dependence of these BAG particles, in concentrations ranging from 0.1 to 2.5 w/v %, influenced hMSC metabolic activity, proliferation, and cell spreading. These cellular functions were significantly hampered when hMSCs were exposed to high concentrations of either glasses, but the effects were more pronounced in the 45S5 groups and when the cells were in direct contact with the BAGs. Furthermore the biological effect of 1393 BAG outperformed that of 45S5 BAG in all tested presentation modes. These outcomes highlight the importance of investigating cell-BAG interactions in experimental set-ups that recapitulate host cell interactions with BAG particles. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2772-2782, 2017.


Asunto(s)
Materiales Biocompatibles/metabolismo , Cerámica/metabolismo , Células Madre Mesenquimatosas/citología , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Vidrio , Humanos , Iones/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...