Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 244, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38575936

RESUMEN

BACKGROUND: This study aims to decipher the genetic basis governing yield components and quality attributes of peanuts, a critical aspect for advancing molecular breeding techniques. Integrating genotype re-sequencing and phenotypic evaluations of seven yield components and two grain quality traits across four distinct environments allowed for the execution of a genome-wide association study (GWAS). RESULTS: The nine phenotypic traits were all continuous and followed a normal distribution. The broad heritability ranged from 88.09 to 98.08%, and the genotype-environment interaction effects were all significant. There was a highly significant negative correlation between protein content (PC) and oil content (OC). The 10× genome re-sequencing of 199 peanut accessions yielded a total of 631,988 high-quality single nucleotide polymorphisms (SNPs), with 374 significant SNP loci identified in association with the nine traits of interest. Notably, 66 of these pertinent SNPs were detected in multiple environments, and 48 of them were linked to multiple traits of interest. Five loci situated on chromosome 16 (Chr16) exhibited pleiotropic effects on yield traits, accounting for 17.64-32.61% of the observed phenotypic variation. Two loci on Chr08 were found to be strongly associated with protein and oil contents, accounting for 12.86% and 14.06% of their respective phenotypic variations, respectively. Linkage disequilibrium (LD) block analysis of these seven loci unraveled five nonsynonymous variants, leading to the identification of one yield-related candidate gene and two quality-related candidate genes. The correlation between phenotypic variation and SNP loci in these candidate genes was validated by Kompetitive allele-specific PCR (KASP) marker analysis. CONCLUSIONS: Overall, molecular markers were developed for genetic loci associated with yield and quality traits through a GWAS investigation of 199 peanut accessions across four distinct environments. These molecular tools can aid in the development of desirable peanut germplasm with an equilibrium of yield and quality through marker-assisted breeding.


Asunto(s)
Arachis , Estudio de Asociación del Genoma Completo , Arachis/genética , Sitios de Carácter Cuantitativo/genética , Fitomejoramiento , Mapeo Cromosómico/métodos , Fenotipo , Polimorfismo de Nucleótido Simple/genética
2.
BMC Plant Biol ; 24(1): 207, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515036

RESUMEN

BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum severely affects peanut (Arachis hypogaea L.) yields. The breeding of resistant cultivars is an efficient means of controlling plant diseases. Therefore, identification of resistance genes effective against bacterial wilt is a matter of urgency. The lack of a reference genome for a resistant genotype severely hinders the process of identification of resistance genes in peanut. In addition, limited information is available on disease resistance-related pathways in peanut. RESULTS: Full-length transcriptome data were used to generate wilt-resistant and -susceptible transcript pools. In total, 253,869 transcripts were retained to form a reference transcriptome for RNA-sequencing data analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes revealed the plant-pathogen interaction pathway to be the main resistance-related pathway for peanut to prevent bacterial invasion and calcium plays an important role in this pathway. Glutathione metabolism was enriched in wilt-susceptible genotypes, which would promote glutathione synthesis in the early stages of pathogen invasion. Based on our previous quantitative trait locus (QTL) mapping results, the genes arahy.V6I7WA and arahy.MXY2PU, which encode nucleotide-binding site-leucine-rich repeat receptor proteins, were indicated to be associated with resistance to bacterial wilt. CONCLUSIONS: This study identified several pathways associated with resistance to bacterial wilt and identified candidate genes for bacterial wilt resistance in a major QTL region. These findings lay a foundation for investigation of the mechanism of resistance to bacterial wilt in peanut.


Asunto(s)
Arachis , Ralstonia solanacearum , Arachis/genética , Arachis/microbiología , Transcriptoma , Ralstonia solanacearum/fisiología , Fitomejoramiento , Resistencia a la Enfermedad/genética , Glutatión/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
3.
Genes (Basel) ; 15(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38397150

RESUMEN

The capability of embryogenic callus induction is a prerequisite for in vitro plant regeneration. However, embryogenic callus induction is strongly genotype-dependent, thus hindering the development of in vitro plant genetic engineering technology. In this study, to examine the genetic variation in embryogenic callus induction rate (CIR) in peanut (Arachis hypogaea L.) at the seventh, eighth, and ninth subcultures (T7, T8, and T9, respectively), we performed genome-wide association studies (GWAS) for CIR in a population of 353 peanut accessions. The coefficient of variation of CIR among the genotypes was high in the T7, T8, and T9 subcultures (33.06%, 34.18%, and 35.54%, respectively), and the average CIR ranged from 1.58 to 1.66. A total of 53 significant single-nucleotide polymorphisms (SNPs) were detected (based on the threshold value -log10(p) = 4.5). Among these SNPs, SNPB03-83801701 showed high phenotypic variance and neared a gene that encodes a peroxisomal ABC transporter 1. SNPA05-94095749, representing a nonsynonymous mutation, was located in the Arahy.MIX90M locus (encoding an auxin response factor 19 protein) at T8, which was associated with callus formation. These results provide guidance for future elucidation of the regulatory mechanism of embryogenic callus induction in peanut.


Asunto(s)
Arachis , Estudio de Asociación del Genoma Completo , Arachis/genética , Polimorfismo de Nucleótido Simple , Genotipo , Ingeniería Genética
4.
Genome ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394647

RESUMEN

For peanut, the lack of stable cytological markers is a barrier to tracking specific chromosomes, elucidating the genetic relationships between genomes and identifying chromosomal variations. Chromosome mapping using single-copy oligonucleotide (oligo) probe libraries has unique advantages for identifying homologous chromosomes and chromosomal rearrangements. In this study, we developed two whole-chromosome single-copy oligo probe libraries, LS-7A and LS-8A, based on the reference genome sequences of chromosomes 7A and 8A of Arachis duranensis. Fluorescence in situ hybridization (FISH) analysis confirmed that the libraries could specifically paint chromosomes 7 and 8. In addition, sequential FISH and electronic localization of LS-7A and LS-8A in A. duranensis (AA) and A. ipaensis (BB) showed that chromosomes 7A and 8A contained translocations and inversions relative to chromosomes 7B and 8B. Analysis of the chromosomes of wild Arachis species using LS-8A confirmed that this library could accurately and effectively identify A genome species. Finally, LS-7A and LS-8A were used to paint the chromosomes of interspecific hybrids and their progenies, which verified the authenticity of the interspecific hybrids and identified a disomic addition line. This study provides a model for developing specific oligo probes to identify the structural variations of other chromosomes in Arachis and demonstrates the practical utility of LS-7A and LS-8A.

5.
BMC Genomics ; 25(1): 65, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229017

RESUMEN

BACKGROUND: Pod shell thickness (PST) is an important agronomic trait of peanut because it affects the ability of shells to resist pest infestations and pathogen attacks, while also influencing the peanut shelling process. However, very few studies have explored the genetic basis of PST. RESULTS: An F2 segregating population derived from a cross between the thick-shelled cultivar Yueyou 18 (YY18) and the thin-shelled cultivar Weihua 8 (WH8) was used to identify the quantitative trait loci (QTLs) for PST. On the basis of a bulked segregant analysis sequencing (BSA-seq), four QTLs were preliminarily mapped to chromosomes 3, 8, 13, and 18. Using the genome resequencing data of YY18 and WH8, 22 kompetitive allele-specific PCR (KASP) markers were designed for the genotyping of the F2 population. Two major QTLs (qPSTA08 and qPSTA18) were identified and finely mapped, with qPSTA08 detected on chromosome 8 (0.69-Mb physical genomic region) and qPSTA18 detected on chromosome 18 (0.15-Mb physical genomic region). Moreover, qPSTA08 and qPSTA18 explained 31.1-32.3% and 16.7-16.8% of the phenotypic variation, respectively. Fifteen genes were detected in the two candidate regions, including three genes with nonsynonymous mutations in the exon region. Two molecular markers (Tif2_A08_31713024 and Tif2_A18_7198124) that were developed for the two major QTL regions effectively distinguished between thick-shelled and thin-shelled materials. Subsequently, the two markers were validated in four F2:3 lines selected. CONCLUSIONS: The QTLs identified and molecular markers developed in this study may lay the foundation for breeding cultivars with a shell thickness suitable for mechanized peanut shelling.


Asunto(s)
Arachis , Sitios de Carácter Cuantitativo , Arachis/genética , Mapeo Cromosómico , Fitomejoramiento , Fenotipo
6.
Mol Breed ; 43(10): 72, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37786866

RESUMEN

Population and genotype data are essential for genetic mapping. The multi-parent advanced generation intercross (MAGIC) population is a permanent mapping population used for precisely mapping quantitative trait loci. Moreover, genotyping-by-target sequencing (GBTS) is a robust high-throughput genotyping technology characterized by its low cost, flexibility, and limited requirements for information management and support. In this study, an 8-way MAGIC population was constructed using eight elite founder lines. In addition, GenoBaits Peanut 40K was developed and utilized for the constructed MAGIC population. A subset (297 lines) of the MAGIC population at the S2 stage was genotyped using GenoBaits Peanut 40K. Furthermore, these lines and the eight parents were analyzed in terms of pod length, width, area, and perimeter. A total of 27 single nucleotide polymorphisms (SNPs) were revealed to be significantly associated with peanut pod size-related traits according to a genome-wide association study. The GenoBaits Peanut 40K provided herein and the constructed MAGIC population will be applicable for future research to identify the key genes responsible for important peanut traits. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01417-w.

7.
BMC Plant Biol ; 23(1): 518, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884908

RESUMEN

BACKGROUND: Peanut is an important oil crop worldwide. Peanut web blotch is a fungal disease that often occurs at the same time as other leaf spot diseases, resulting in substantial leaf drop, which seriously affects the peanut yield and quality. However, the molecular mechanism underlying peanut resistance to web blotch is unknown. RESULTS: The cytological examination revealed no differences in the conidium germination rate between the web blotch-resistant variety ZH and the web blotch-susceptible variety PI at 12-48 hpi. The appressorium formation rate was significantly higher for PI than for ZH at 24 hpi. The papilla formation rate at 36 hpi and the hypersensitive response rate at 60 and 84 hpi were significantly higher for ZH than for PI. We also compared the transcriptional profiles of web blotch-infected ZH and PI plants at 0, 12, 24, 36, 48, 60, and 84 hpi using an RNA-seq technique. There were more differentially expressed genes (DEGs) in ZH and PI at 12, 36, 60, and 84 hpi than at 24 and 48 hpi. Moreover, there were more DEGs in PI than in ZH at each time-point. The analysis of metabolic pathways indicated that pantothenate and CoA biosynthesis; monobactam biosynthesis; cutin, suberine and wax biosynthesis; and ether lipid metabolism are specific to the active defense of ZH against YY187, whereas porphyrin metabolism as well as taurine and hypotaurine metabolism are pathways specifically involved in the passive defense of ZH against YY187. In the protein-protein interaction (PPI) network, most of the interacting proteins were serine acetyltransferases and cysteine synthases, which are involved in the cysteine synthesis pathway. The qRT-PCR data confirmed the reliability of the transcriptome analysis. CONCLUSION: On the basis of the PPI network for the significantly enriched genes in the pathways which were specifically enriched at different time points in ZH, we hypothesize that serine acetyltransferases and cysteine synthases are crucial for the cysteine-related resistance of peanut to web blotch. The study results provide reference material for future research on the mechanism mediating peanut web blotch resistance.


Asunto(s)
Arachis , Transcriptoma , Arachis/genética , Arachis/microbiología , Cisteína/genética , Reproducibilidad de los Resultados , Perfilación de la Expresión Génica , Acetiltransferasas/genética , Serina/genética
8.
Front Psychiatry ; 14: 1279962, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822793

RESUMEN

Backgrounds: Tobacco smoking is an important risk factor for coronary artery disease (CAD), but the genetic mechanisms linking smoking to CAD remain largely unknown. Methods: We analyzed summary data from the genome-wide association study (GWAS) of the UK Biobank for CAD, plasma lipid concentrations (n = 184,305), and smoking (n = 337,030) using different biostatistical methods, which included LD score regression and Mendelian randomization (MR). Results: We identified SNPs shared by CAD and at least one smoking behavior, the genes where these SNPs are located were found to be significantly enriched in the processes related to lipoprotein metabolic, chylomicron-mediated lipid transport, lipid digestion, mobilization, and transport. The MR analysis revealed a positive correlation between smoking cessation and decreased risk for CAD when smoking cessation was considered as exposure (p = 0.001), and a negative correlation between the increased risk for CAD and smoking cessation when CAD was considered as exposure (p = 2.95E-08). This analysis further indicated that genetic liability for smoking cessation increased the risk of CAD. Conclusion: These findings inform the concomitant conditions of CAD and smoking and support the idea that genetic liabilities for smoking behaviors are strongly associated with the risk of CAD.

9.
BMC Genomics ; 24(1): 495, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37641021

RESUMEN

Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide. Improving its yield is crucial for sustainable peanut production to meet increasing food and industrial requirements. Deciphering the genetic control underlying peanut kernel weight and size, which are essential components of peanut yield, would facilitate high-yield breeding. A high-density single nucleotide polymorphism (SNP)-based linkage map was constructed using a recombinant inbred lines (RIL) population derived from a cross between the variety Yuanza9102 and a germplasm accession wt09-0023. Kernel weight and size quantitative trait loci (QTLs) were co-localized to a 0.16 Mb interval on Arahy07 using inclusive composite interval mapping (ICIM). Analysis of SNP, and Insertion or Deletion (INDEL) markers in the QTL interval revealed a gene encoding a pentatricopeptide repeat (PPR) superfamily protein as a candidate closely linked with kernel weight and size in cultivated peanut. Examination of the PPR gene family indicated a high degree of collinearity of PPR genes between A. hypogaea and its diploid progenitors, Arachis duranensis and Arachis ipaensis. The candidate PPR gene, Arahy.JX1V6X, displayed a constitutive expression pattern in developing seeds. These findings lay a foundation for further fine mapping of QTLs related to kernel weight and size, as well as validation of candidate genes in cultivated peanut.


Asunto(s)
Arachis , Sitios de Carácter Cuantitativo , Arachis/genética , Fitomejoramiento , Mapeo Cromosómico , Citoplasma
10.
Front Aging Neurosci ; 15: 1157051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251809

RESUMEN

Background: Previous epidemiological studies have reported controversial results on the relationship between smoking and Alzheimer's disease (AD). Therefore, we sought to assess the association using Mendelian randomization (MR) analysis. Methods: We used single nucleotide polymorphisms (SNPs) associated with smoking quantity (cigarettes per day, CPD) from genome-wide association studies (GWAS) of Japanese population as instrumental variables, then we performed two-sample MR analysis to investigate the association between smoking and AD in a Chinese cohort (1,000 AD cases and 500 controls) and a Japanese cohort (3,962 AD cases and 4,074 controls), respectively. Results: Genetically higher smoking quantity showed no statistical causal association with AD risk (the inverse variance weighted (IVW) estimate in the Chinese cohort: odds ratio (OR) = 0.510, 95% confidence interval (CI) = 0.149-1.744, p = 0.284; IVW estimate in the Japanese cohort: OR = 1.170, 95% confidence interval CI = 0.790-1.734, p = 0.434). Conclusion: This MR study, for the first time in Chinese and Japanese populations, found no significant association between smoking and AD.

11.
Theor Appl Genet ; 136(5): 105, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027030

RESUMEN

KEY MESSAGE: QTLs for growth habit are identified on Arahy.15 and Arahy.06 in peanut, and diagnostic markers are developed and validated for further use in marker-assisted breeding. Peanut is a unique legume crop because its pods develop and mature underground. The pegs derive from flowers following pollination, then reach the ground and develop into pods in the soil. Pod number per plant is influenced by peanut growth habit (GH) that has been categorized into four types, including erect, bunch, spreading and prostrate. Restricting pod development at the plant base, as would be the case for peanut plants with upright lateral branches, would decrease pod yield. On the other hand, GH characterized by spreading lateral branches on the ground would facilitate pod formation on the nodes, thereby increasing yield potential. We describe herein an investigation into the GH traits of 521 peanut recombinant inbred lines grown in three distinct environments. Quantitative trait loci (QTLs) for GH were identified on linkage group (LG) 15 between 203.1 and 204.2 cM and on LG 16 from 139.1 to 139.3 cM. Analysis of resequencing data in the identified QTL regions revealed that single nucleotide polymorphism (SNP) or insertion and/or deletion (INDEL) at Arahy15.156854742, Arahy15.156931574, Arahy15.156976352 and Arahy06.111973258 may affect the functions of their respective candidate genes, Arahy.QV02Z8, Arahy.509QUQ, Arahy.ATH5WE and Arahy.SC7TJM. These SNPs and INDELs in relation to peanut GH were further developed for KASP genotyping and tested on a panel of 77 peanut accessions with distinct GH features. This study validates four diagnostic markers that may be used to distinguish erect/bunch peanuts from spreading/prostrate peanuts, thereby facilitating marker-assisted selection for GH traits in peanut breeding.


Asunto(s)
Arachis , Sitios de Carácter Cuantitativo , Arachis/genética , Mapeo Cromosómico , Fitomejoramiento , Fenotipo
12.
Genes (Basel) ; 13(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36292598

RESUMEN

The developmental phase changes of maize are closely associated with the life span, environmental adaption, plant height, and disease resistance of the plant and eventually determines the grain yield and quality of maize. A natural mutant, Early Phase Change 1 (ZmEPC1), was selected from the inbred line KN5585. Compared with the wild type plant, the ZmEPC1 mutant exhibits deceased plant stature, accelerated developmental stages, and decreased leaf size. Through the transcriptome sequencing analysis of leaf samples at flowering stage, a total of 4583 differentially expressed genes (DEGs) were screened between the mutant and wild type, including 2914 down-regulated genes and 1669 up-regulated genes. The GO enrichment and KEGG enrichment analysis revealed that the DEGs were mainly involved in hormone response, hormone signal transduction, autophagy, JA response and signal response, photosynthesis, biotic/abiotic stress, and circadian rhythms. The RT-qPCR results revealed that the most tested DEGs display consistent expression alterations between V5 and FT stages. However, several genes showed opposite expression alterations. Strikingly, most of the JA biosynthesis and signaling pathway-related genes displayed diametrically expression alterations between V5 and FT stages. miR156, a key regulator of plant phase transition, exhibited significant down-regulated expression at V5 and FT stages. The expression of two miR156 target genes were both significantly different between mutants and wild type. In conclusion, ZmEPC1 was identified to be mainly involved in the regulation of JA-mediated signaling pathways and hormone response and signaling, which is possible to confer developmental phase change through miR156-SPLs pathway.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Hormonas
13.
Genes Genomics ; 44(11): 1363-1374, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36125655

RESUMEN

BACKGROUND: Smoking behavior is influenced by multiple genes, including the bitter taste gene TAS2R38. It has been reported that the correlation between TAS2R38 and smoking behavior has ethnicity-based differences. However, the TAS2R38 status in Chinese smokers is still unclear. OBJECTIVE: This study aims to investigate the possible relationship between genetic variations in TAS2R38 (A49P, V262A and I296V) and smoking behaviors in the Han Chinese population. METHODS: The haplotype analyses were performed and smoking behavior questionnaire was completed by 1271 individuals. Genetic association analyses for smoking behavior were analyzed using chi-square test. Further, for investigating the molecular mechanism of TAS2R38 variants effect on smoking behavior, we conducted TAS2R38-PAV and TAS2R38-AVI expression plasmids and tested the cellular calcium assay by cigarette smoke compounds stimulus in HEK293. RESULTS: Significant associations of genetic variants within TAS2R38 were identified with smoking behavior. We found a higher PAV/PAV frequency than AVI/AVI in moderate and high nicotine dependence (FTND ≥ 4; X2 = 4.611, 1 df, p = 0.032) and strong cigarette smoke flavor intensity preference (X2 = 4.5383, 1 df, p = 0.033) in participants. Furthermore, in the in vitro cellular calcium assay, total particle matter (TPM), N-formylnornicotine and cotinine, existing in cigarette smoke, activated TAS2R38-PAV but not TAS2R38-AVI-transfected cells. CONCLUSION: Our data highlights that genetic variations in TAS2R38 are related to smoking behavior, especially nicotine dependence and cigarette smoke flavor intensity preference. Our findings may encourage further consideration of the taste process to identify individuals susceptible to nicotine dependence, particularly Han Chinese smokers.


Asunto(s)
Fumar Cigarrillos , Tabaquismo , Calcio , China , Cotinina , Variación Genética , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/genética , Fumadores , Gusto/genética
14.
Front Plant Sci ; 13: 958808, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172561

RESUMEN

Pod size is one of the most important agronomic features of peanuts, which directly affects peanut yield. Studies on the regulation mechanism underpinning pod size in cultivated peanuts remain hitherto limited compared to model plant systems. To better understand the molecular elements that underpin peanut pod development, we conducted a comprehensive analysis of chronological transcriptomics during pod development in four peanut accessions with similar genetic backgrounds, but varying pod sizes. Several plant transcription factors, phytohormones, and the mitogen-activated protein kinase (MAPK) signaling pathways were significantly enriched among differentially expressed genes (DEGs) at five consecutive developmental stages, revealing an eclectic range of candidate genes, including PNC, YUC, and IAA that regulate auxin synthesis and metabolism, CYCD and CYCU that regulate cell differentiation and proliferation, and GASA that regulates seed size and pod elongation via gibberellin pathway. It is plausible that MPK3 promotes integument cell division and regulates mitotic activity through phosphorylation, and the interactions between these genes form a network of molecular pathways that affect peanut pod size. Furthermore, two variant sites, GCP4 and RPPL1, were identified which are stable at the QTL interval for seed size attributes and function in plant cell tissue microtubule nucleation. These findings may facilitate the identification of candidate genes that regulate pod size and impart yield improvement in cultivated peanuts.

15.
Front Plant Sci ; 13: 899177, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812950

RESUMEN

Cultivated peanut (Arachis hypogaea L.), a cosmopolitan oil crop, is susceptible to a variety of pathogens, especially Aspergillus flavus L., which not only vastly reduce the quality of peanut products but also seriously threaten food safety for the contamination of aflatoxin. However, the key genes related to resistance to Aspergillus flavus L. in peanuts remain unclear. This study identifies hub genes positively associated with resistance to A. flavus in two genotypes by comparative transcriptome and weighted gene co-expression network analysis (WGCNA) method. Compared with susceptible genotype (Zhonghua 12, S), the rapid response to A. flavus and quick preparation for the translation of resistance-related genes in the resistant genotype (J-11, R) may be the drivers of its high resistance. WGCNA analysis revealed that 18 genes encoding pathogenesis-related proteins (PR10), 1-aminocyclopropane-1-carboxylate oxidase (ACO1), MAPK kinase, serine/threonine kinase (STK), pattern recognition receptors (PRRs), cytochrome P450, SNARE protein SYP121, pectinesterase, phosphatidylinositol transfer protein, and pentatricopeptide repeat (PPR) protein play major and active roles in peanut resistance to A. flavus. Collectively, this study provides new insight into resistance to A. flavus by employing WGCNA, and the identification of hub resistance-responsive genes may contribute to the development of resistant cultivars by molecular-assisted breeding.

16.
iScience ; 25(4): 104114, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35391832

RESUMEN

The laryngeal echolocation is regarded as one of the conspicuous traits that play major roles in flourishing bats. Whether the laryngeal echolocation in bats originated once, however, is still controversial. We here address this question by performing molecular convergence analyses between ancestral branches of bats and toothed whales. Compared with controls, the molecular convergences were enriched in hearing-related genes for the last common ancestor of bats (LCAB) and extant echolocating bats, but not for the LCA of Old World fruit bats (LCAP). And the convergent hearing gene prestin of the LCAB and the extant echolocating bats functionally converged. More importantly, the high-frequency hearing of the LCAP-prestin knock-in mice decreased with lower cochlear outer hair cell function compared with the LCAB-prestin knock-in mice. Together, our findings provide multiple lines of evidence suggesting a single origin of laryngeal echolocation in the LCAB and the subsequent loss in the LCAP.

17.
Theor Appl Genet ; 135(4): 1319-1330, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35059781

RESUMEN

KEY MESSAGE: A major QTL, qBWA12, was fine mapped to a 216.68 kb physical region, and A12.4097252 was identified as a useful KASP marker for breeding peanut varieties resistant to bacterial wilt. Bacterial wilt, caused by Ralstonia solanacearum, is a major disease detrimental to peanut production in China. Breeding disease-resistant peanut varieties is the most economical and effective way to prevent the disease and yield loss. Fine mapping the QTLs for bacterial wilt resistance is critical for the marker-assisted breeding of disease-resistant varieties. A recombinant inbred population comprising 521 lines was used to construct a high-density genetic linkage map and to identify QTLs for bacterial wilt resistance following restriction-site-associated DNA sequencing. The genetic map, which included 5120 SNP markers, covered a length of 3179 cM with an average marker distance of 0.6 cM. Four QTLs for bacterial wilt resistance were mapped on four chromosomes. One major QTL, qBWA12, with LOD score of 32.8-66.0 and PVE of 31.2-44.8%, was stably detected in all four development stages investigated over the 3 trial years. Additionally, qBWA12 spanned a 2.7 cM region, corresponding to approximately 0.4 Mb and was fine mapped to a 216.7 kb region by applying KASP markers that were polymorphic between the two parents based on whole-genome resequencing data. In a large collection of breeding and germplasm lines, it was proved that KASP marker A12.4097252 can be applied for the marker-assisted breeding to develop peanut varieties resistant to bacterial wilt. Of the 19 candidate genes in the region covered by qBWA12, nine NBS-LRR genes should be further investigated regarding their potential contribution to the resistance of peanut against bacterial wilt.


Asunto(s)
Arachis , Resistencia a la Enfermedad , Arachis/genética , Arachis/microbiología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple
18.
Front Genet ; 13: 1089389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685909

RESUMEN

As an important factor affecting the edible quality of peanut kernels, sucrose content is a complex quantitative trait regulated by multiple factors. In this study, an F2 segregating population and a recombinant inbred line (RIL) population, derived from a cross between the high sucrose content variety Jihuatian 1 and the low sucrose content line PI478819, were used as materials to map a quantitative trait locus (QTL) associated with sucrose content in peanut kernels. Four QTLs were initially located on chromosomes A03 and A06 based on BSA-seq technology, and multiple kompetitive allele-specific PCR markers were developed based on single-nucleotide polymorphisms (SNPs) in the intervals. The markers were genotyped in the RIL population and finely mapped to a stable QTL, qSUCA06, located on chromosome A06 within a 0.29-Mb physical genomic interval (112367085-112662675 bp), which accounted for 31.95%-41.05% of the phenotypic variance explained. SNP and insertion/deletion annotations were performed on genes in the candidate interval, and having screened out those genes with mutations in exons, candidate genes were verified by qRT-PCR. The results revealed that Arahy.Y2LWD9 may be the main gene regulating sucrose content. The QTL identified in this study will not only contribute to marker-assisted breeding for improvement of peanut sucrose content but also paves the way for identifying gene function.

19.
Science ; 372(6548)2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34140356

RESUMEN

Echolocation is the use of reflected sound to sense features of the environment. Here, we show that soft-furred tree mice (Typhlomys) echolocate based on multiple independent lines of evidence. Behavioral experiments show that these mice can locate and avoid obstacles in darkness using hearing and ultrasonic pulses. The proximal portion of their stylohyal bone fuses with the tympanic bone, a form previously only seen in laryngeally echolocating bats. Further, we found convergence of hearing-related genes across the genome and of the echolocation-related gene prestin between soft-furred tree mice and echolocating mammals. Together, our findings suggest that soft-furred tree mice are capable of echolocation, and thus are a new lineage of echolocating mammals.


Asunto(s)
Ecolocación , Roedores/fisiología , Animales , Evolución Biológica , Huesos/anatomía & histología , Quirópteros/anatomía & histología , Quirópteros/fisiología , Genoma , Audición/genética , Laringe/anatomía & histología , Laringe/fisiología , Mamíferos/anatomía & histología , Mamíferos/genética , Mamíferos/fisiología , Roedores/anatomía & histología , Roedores/genética , Transportadores de Sulfato/genética , Hueso Temporal/anatomía & histología
20.
BMC Plant Biol ; 20(1): 249, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493219

RESUMEN

BACKGROUND: Web blotch is one of the most important foliar diseases worldwide in peanut (Arachis hypogaea L.). The identification of quantitative trait loci (QTLs) for peanut web blotch resistance represents the basis for gene mining and the application of molecular breeding technologies. RESULTS: In this study, a peanut recombinant inbred line (RIL) population was used to map QTLs for web blotch resistance based on high-throughput genome-wide sequencing. Frequency distributions of disease grade and disease index in five environments indicated wide phenotypic variations in response to web blotch among RILs. A high-density genetic map was constructed, containing 3634 bin markers distributed on 20 peanut linkage groups (LGs) with an average genetic distance of 0.5 cM. In total, eight QTLs were detected for peanut web blotch resistance in at least two environments, explaining from 2.8 to 15.1% of phenotypic variance. Two major QTLs qWBRA04 and qWBRA14 were detected in all five environments and were linked to 40 candidate genes encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) or other proteins related to disease resistances. CONCLUSIONS: The results of this study provide a basis for breeding peanut cultivars with web blotch resistance.


Asunto(s)
Arachis/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Arachis/inmunología , Arachis/microbiología , Mapeo Cromosómico , Marcadores Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Phoma , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...