Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Res ; 22(7): 656-667, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38441553

RESUMEN

A key feature distinguishing high-grade glioma (HG) from low-grade glioma (LG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor-associated vasculature from HG is molecularly and functionally distinct from normal brain vasculature and expresses higher levels of protumorigenic factors that promote glioma growth and progression. However, it remains unclear whether vessels from LG also express protumorigenic factors, and to what extent they functionally contribute to glioma growth. Here, we profile the transcriptomes of glioma-associated vascular cells (GVC) from IDH-mutant (mIDH) LG and IDH-wild-type (wIDH) HG and show that they exhibit significant molecular and functional differences. LG-GVC show enrichment of extracellular matrix-related gene sets and sensitivity to antiangiogenic drugs, whereas HG-GVC display an increase in immune response-related gene sets and antiangiogenic resistance. Strikingly, conditioned media from LG-GVC inhibits the growth of wIDH glioblastoma cells, whereas HG-GVC promotes growth. In vivo cotransplantation of LG-GVC with tumor cells reduces growth, whereas HG-GVC enhances tumor growth in orthotopic xenografts. We identify ASPORIN (ASPN), a small leucine-rich repeat proteoglycan, highly enriched in LG-GVC as a growth suppressor of wIDH glioblastoma cells in vitro and in vivo. Together, these findings indicate that GVC from LG and HG are molecularly and functionally distinct and differentially regulate tumor growth. Implications: This study demonstrated that vascular cells from IDH-mutant LG and IDH-wild-type HG exhibit distinct molecular signatures and have differential effects on tumor growth via regulation of ASPN-TGFß1-GPM6A signaling.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neovascularización Patológica , Humanos , Glioma/patología , Glioma/genética , Glioma/metabolismo , Animales , Ratones , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neovascularización Patológica/metabolismo , Línea Celular Tumoral , Proliferación Celular , Mutación , Clasificación del Tumor
2.
bioRxiv ; 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37461434

RESUMEN

Background: A key feature distinguishing high-grade glioma (HGG) from low-grade glioma (LGG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor endothelial cells (TEC) from HGG are molecularly and functionally distinct from normal brain EC and secrete higher levels of pro-tumorigenic factors that promote glioma growth and progression. However, it remains unclear whether TEC from LGG also express pro-tumorigenic factors, and to what extent they functionally contribute to glioma growth. Methods: Transcriptomic profiling was conducted on tumor endothelial cells (TEC) from grade II/III (LGG, IDH-mutant) and grade IV HGG (IDH-wildtype). Functional differences between LGG- and HGG-TEC were evaluated using growth assays, resistance to anti-angiogenic drugs and radiation therapy. Conditioned media and specific factors from LGG- and HGG-TEC were tested on patient-derived gliomasphere lines using growth assays in vitro and in co-transplantation studies in vivo in orthotopic xenograft models. Results: LGG-TEC showed enrichment of extracellular matrix and cell cycle-related gene sets and sensitivity to anti-angiogenic therapy whereas HGG-TEC displayed an increase in immune response-related gene sets and anti-angiogenic resistance. LGG- and HGG-TEC displayed opposing effects on growth and proliferation of IDH-wildtype and mutant tumor cells. Asporin (ASPN), a small leucine rich proteoglycan enriched in LGG-TEC was identified as a growth suppressor of IDH-wildtype GBM by modulating TGFΒ1-GPM6A signaling. Conclusions: Our findings indicate that TEC from LGG and HGG are molecularly and functionally heterogeneous and differentially regulate the growth of IDH-wildtype and mutant tumors.

3.
Opt Express ; 31(12): 20505-20517, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381444

RESUMEN

A true-color light-field display system with a large depth-of-field (DOF) is demonstrated. Reducing crosstalk between viewpoints and increasing viewpoint density are the key points to realize light-field display system with large DOF. The aliasing and crosstalk of light beams in the light control unit (LCU) are reduced by adopting collimated backlight and reversely placing the aspheric cylindrical lens array (ACLA). The one-dimensional (1D) light-field encoding of halftone images increases the number of controllable beams within the LCU and improves viewpoint density. The use of 1D light-field encoding leads to a decrease in the color-depth of the light-field display system. The joint modulation for size and arrangement of halftone dots (JMSAHD) is used to increase color-depth. In the experiment, a three-dimensional (3D) model was constructed using halftone images generated by JMSAHD, and a light-field display system with a viewpoint density of 1.45 (i.e. 1.45 viewpoints per degree of view) and a DOF of 50 cm was achieved at a 100 ° viewing angle.

4.
Chem Commun (Camb) ; 56(55): 7645-7648, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32520020

RESUMEN

Li-based reduced (r)GO-Ni (Li/rGO-Ni) was prepared by a thermal-infusion method. Li/rGO-Ni based symmetric cells have high cycling stability and small voltage hysteresis at various current densities. Furthermore, the Li/rGO-Ni based Li-O2 batteries exhibit good performances.

5.
Nanoscale ; 11(45): 21943-21952, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31701977

RESUMEN

Exploring highly efficient catalysts for the oxygen reduction/evolution reaction (ORR/OER) is very important in rechargeable Zn-air batteries. N-doped carbon coupled with transition metal-based species are among the most promising cathode catalysts for Zn-air batteries. However, the aggregation of metal-based sites during the synthetic/cycling process is a serious drawback of these catalysts. Herein, in situ encapsulation of ultra-small Co/Co4N nanoparticles into N-doping carbon nanotubes (N-CNTs) anchored on reduced GO (Co/Co4N@N-CNTs/rGO) has been achieved through pyrolyzing a core-shell-structured ZIF-8@ZIF-67-modified GO (ZIF-8@ZIF-67/GO) precursor; the nanoparticles have been further applied as a bifunctional catalyst in Zn-air batteries. Benefitting from its uniform dispersion of Co-based particles, close contact of Co/Co4N species and N-CNTs, and high N content, Co/Co4N@N-CNTs/rGO shows outstanding catalytic activity/stability towards ORR and OER. Moreover, Zn volatilization and rGO introduction in Co/Co4N@N-CNTs/rGO can effectively promote the reactions of Zn-air cells. Hence, the Co/Co4N@N-CNTs/rGO-based conventional Zn-air battery exhibits a fantastic specific capacity of 783 mA h gZn-1, a continuous discharge platform over 6 days, a high-power density of ∼200 mW cm-2 and an ultra-long cycling life of 440 h with a small overpotential of ∼0.8 V. Moreover, a flexible Co/Co4N@N-CNTs/rGO-based Zn-air cell was also designed and revealed outstanding mechanical flexibility and good electrochemical performance, which suggests its potential application prospects in wearable electronic devices.

6.
Chem Commun (Camb) ; 55(68): 10092-10095, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31380875

RESUMEN

Co4N/Co-NC was synthesized through pyrolysis of ZIF-67 and modified with Ru nanoparticles to form Ru-Co4N/Co-NC. The resulting Ru-Co4N/Co-NC is used as a cathode for a Li-O2 battery, which shows good electrochemical performances.

7.
Small ; 15(29): e1803246, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30345634

RESUMEN

Rechargeable Li-CO2 batteries have attracted worldwide attention due to the capability of CO2 capture and superhigh energy density. However, they still suffer from poor cycling performance and huge overpotential. Thus, it is essential to explore highly efficient catalysts to improve the electrochemical performance of Li-CO2 batteries. Here, phytic acid (PA)-cross-linked ruthenium complexes and melamine are used as precursors to design and synthesize RuP2 nanoparticles highly dispersed on N, P dual-doped carbon films (RuP2 -NPCFs), and the obtained RuP2 -NPCF is further applied as the catalytic cathode for Li-CO2 batteries. RuP2 nanoparticles that are uniformly deposited on the surface of NPCF show enhanced catalytic activity to decompose Li2 CO3 at low charge overpotential. In addition, the NPCF its with porous structure in RuP2 -NPCF provides superior electrical conductivity, high electrochemical stability, and enough ion/electron and space for the reversible reaction in Li-CO2 batteries. Hence, the RuP2 -NPCF cathode delivers a superior reversible discharge capacity of 11951 mAh g-1 , and achieves excellent cyclability for more than 200 cycles with low overpotentials (<1.3 V) at the fixed capacity of 1000 mAh g-1 . This work paves a new way to design more effective catalysts for Li-CO2 batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...