Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1385552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699434

RESUMEN

Raman spectroscopy is an optical technique that uses inelastic light scattering in response to vibrating molecules to produce chemical fingerprints of tissues, cells, and biofluids. Raman spectroscopy strategies produce high levels of chemical specificity without requiring extensive sample preparation, allowing for the use of advanced optical tools such as microscopes, fiber optics, and lasers that operate in the visible and near-infrared spectral range, making them increasingly suitable for a wide range of medical diagnostic applications. Metal nanoparticles and nonlinear optical effects can improve Raman signals, and optimized fiber optic Raman probes can make real-time, in vivo, single-point observations. Furthermore, diagnostic speed and spatial accuracy can be improved through the multimodal integration of Raman measurements and other technologies. Recent studies have significantly contributed to the improvement of diagnostic speed and accuracy, making them suitable for clinical application. Lung cancer is a prevalent type of respiratory malignancy. However, the use of computed tomography for detection and screening frequently reveals numerous smaller lung nodules, which makes the diagnostic process more challenging from a clinical perspective. While the majority of small nodules detected are benign, there are currently no direct methods for identifying which nodules represent very early-stage lung cancer. Positron emission tomography and other auxiliary diagnostic methods for non-surgical biopsy samples from these small nodules yield low detection rates, which might result in significant expenses and the possibility of complications for patients. While certain subsets of patients can undergo curative treatment, other individuals have a less favorable prognosis and need alternative therapeutic interventions. With the emergence of new methods for treating cancer, such as immunotherapies, which can potentially extend patient survival and even lead to a complete cure in certain instances, it is crucial to determine the most suitable biomarkers and metrics for assessing the effectiveness of these novel compounds. This will ensure that significant treatment outcomes are accurately measured. This review provides a comprehensive overview of the prospects of Raman spectroscopy and its applications in the diagnosis and analysis of lung tumors.

3.
Front Immunol ; 15: 1341255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464517

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL)/T-cell lymphoblastic lymphoma (T-LBL) is an uncommon but highly aggressive hematological malignancy. It has high recurrence and mortality rates and is challenging to treat. This study conducted bioinformatics analyses, compared genetic expression profiles of healthy controls with patients having T-ALL/T-LBL, and verified the results through serological indicators. Data were acquired from the GSE48558 dataset from Gene Expression Omnibus (GEO). T-ALL patients and normal T cells-related differentially expressed genes (DEGs) were investigated using the online analysis tool GEO2R in GEO, identifying 78 upregulated and 130 downregulated genes. Gene Ontology (GO) and protein-protein interaction (PPI) network analyses of the top 10 DEGs showed enrichment in pathways linked to abnormal mitotic cell cycles, chromosomal instability, dysfunction of inflammatory mediators, and functional defects in T-cells, natural killer (NK) cells, and immune checkpoints. The DEGs were then validated by examining blood indices in samples obtained from patients, comparing the T-ALL/T-LBL group with the control group. Significant differences were observed in the levels of various blood components between T-ALL and T-LBL patients. These components include neutrophils, lymphocyte percentage, hemoglobin (HGB), total protein, globulin, erythropoietin (EPO) levels, thrombin time (TT), D-dimer (DD), and C-reactive protein (CRP). Additionally, there were significant differences in peripheral blood leukocyte count, absolute lymphocyte count, creatinine, cholesterol, low-density lipoprotein, folate, and thrombin times. The genes and pathways associated with T-LBL/T-ALL were identified, and peripheral blood HGB, EPO, TT, DD, and CRP were key molecular markers. This will assist the diagnosis of T-ALL/T-LBL, with applications for differential diagnosis, treatment, and prognosis.


Asunto(s)
Linfoma de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Mapas de Interacción de Proteínas/genética , Transcriptoma , Biología Computacional/métodos
4.
Front Neurosci ; 18: 1301107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370434

RESUMEN

Raman scattering is an inelastic light scattering that occurs in a manner reflective of the molecular vibrations of molecular structures and chemical conditions in a given sample of interest. Energy changes in the scattered light can be assessed to determine the vibration mode and associated molecular and chemical conditions within the sample, providing a molecular fingerprint suitable for sample identification and characterization. Raman spectroscopy represents a particularly promising approach to the molecular analysis of many diseases owing to clinical advantages including its instantaneous nature and associated high degree of stability, as well as its ability to yield signal outputs corresponding to a single molecule type without any interference from other molecules as a result of its narrow peak width. This technology is thus ideally suited to the simultaneous assessment of multiple analytes. Neurodegenerative diseases represent an increasingly significant threat to global public health owing to progressive population aging, imposing a severe physical and social burden on affected patients who tend to develop cognitive and/or motor deficits beginning between the ages of 50 and 70. Owing to a relatively limited understanding of the etiological basis for these diseases, treatments are lacking for the most common neurodegenerative diseases, which include Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. The present review was formulated with the goal of briefly explaining the principle of Raman spectroscopy and discussing its potential applications in the diagnosis and evaluation of neurodegenerative diseases, with a particular emphasis on the research prospects of this novel technological platform.

5.
Environ Pollut ; 336: 122507, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37673318

RESUMEN

Lake microbiomes are essential indicators of lake health and are strongly influenced by allochthonous microbial communities from various sources within the watershed. However, quantifying the contributions of multiple inputs to lake microbiomes is challenging because of the complex nature of river‒lake systems and the presence of many untraceable sources. Here, Jianhu Lake‒‒a geographically simple and closed plateau lake in southwestern China, was surveyed to disentangle the contributions of five distinct sources (three input rivers that receive town sewage, stormwater runoff, and creek spring water, as well as two nonpoint sources, duck ponds and dry farmland) to the overall lake microbiomes. We found that feces-loading sources, namely town sewage and duck aquaculture, accounted for 48.7% of the total variations in lake microbiomes. In contrast, the combined contribution of the remaining three sources amounted to 13.21%, despite these less-influential sources (e.g., stormwater runoff) may introduce an even larger volume of allochthonous materials into the lake. In addition, approximately 38.1% of the variations in the lake microbiomes were attributed to unknown sources. Sewage effluents also caused a significant loss of lake microbial diversity, and there was a tendency for large-scale microbial homogeneity in lake sediments that resembled those from duck ponds. We then used a targeted approach to track host-specific fecal pollution, and found that human feces were the primary source, followed by ruminant and chicken/duck feces, all of which can be successfully traced back to the feces-loading sources. In our further modelling of sediment transport from three rivers into the whole lake, we observed a significant relationship between sediment accumulation and adsorbed microorganisms only for the sewage-receiving river. Together, lines of evidence indicate that both point and nonpoint fecal-related anthropogenic sources possess discriminatory power for shaping microbial geographic patterns of the lake, posing threats to the survival of local indigenous lake microbiomes.

6.
Plant Cell ; 35(10): 3828-3844, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37392473

RESUMEN

Plant defense against herbivores is costly and often associated with growth repression. The phytohormone jasmonate (JA) plays a central role in prioritizing defense over growth during herbivore attack, but the underlying mechanisms remain unclear. When brown planthoppers (BPH, Nilaparvata lugens) attack rice (Oryza sativa), growth is dramatically suppressed. BPH infestation also increases inactive gibberellin (GA) levels and transcripts of GA 2-oxidase (GA2ox) genes, 2 (GA2ox3 and GA2ox7) of which encode enzymes that catalyze the conversion of bioactive GAs to inactive GAs in vitro and in vivo. Mutation of these GA2oxs diminishes BPH-elicited growth restriction without affecting BPH resistance. Phytohormone profiling and transcriptome analyses revealed that GA2ox-mediated GA catabolism was enhanced by JA signaling. The transcript levels of GA2ox3 and GA2ox7 were significantly attenuated under BPH attack in JA biosynthesis (allene oxide cyclase [aoc]) or signaling-deficient (myc2) mutants. In contrast, GA2ox3 and GA2ox7 expression was increased in MYC2 overexpression lines. MYC2 directly binds to the G-boxes in the promoters of both GA2ox genes to regulate their expression. We conclude that JA signaling simultaneously activates defense responses and GA catabolism to rapidly optimize resource allocation in attacked plants and provides a mechanism for phytohormone crosstalk.

7.
J Ethnopharmacol ; 305: 116086, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36587879

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Peritoneal metastasis is a manifestation of advanced cancer often associated with a poor prognosis and poor response to treatment. Astragalus membranaceus (Fisch.) Bunge is a commonly used medicinal material in traditional Chinese medicine with various biological activities. In patients with cancer, Astragalus membranaceus has demonstrated anti-tumor effects, immune regulation, postoperative recurrence and metastasis prevention, and survival prolongation. AIM OF THE STUDY: Peritoneal metastasis results from tumor cell and peritoneal microenvironment co-evolution. We aimed to introduce and discuss the specific mechanism of action of Astragalus membranaceus in peritoneal metastasis treatment to provide a new perspective for treatment and further research. MATERIALS AND METHODS: We consulted reports on the anti-peritoneal metastases effects of Astragalus membranaceus from PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang databases, as well as Google Scholar. Meanwhile, we also obtained data from published medical works and doctoral and master's theses. Then, we focused on the research progress of Astragalus membranaceus in peritoneal metastatic cancer treatment. Plant names are provided in accordance with "The Plant List" (www.theplantlist.org). RESULTS: To date, more than 200 compounds have been isolated from Astragalus membranaceus. Among them, Astragalus polysaccharides, saponins, and flavonoids are the main bioactive components, and their effects on cancer have been extensively studied. In this review, we systematically summarize the effects of Astragalus membranaceus on the peritoneal metastasis microenvironment and related mechanisms, including maintaining the integrity of peritoneal mesothelial cells, restoring the peritoneal immune microenvironment, and inhibiting the formation of tumor blood vessels, matrix metalloproteinase, and dense tumor spheroids. CONCLUSIONS: Our analysis demonstrates that Astragalus membranaceus could be a potential therapeutic for preventing the occurrence of peritoneal metastasis. However, it might be too early to recommend its use owing to the paucity of reliable in vivo experiment, clinical data, and evidence of clinical efficacy. In addition, previous studies of Astragalus membranaceus report inconsistent and contradictory findings. Therefore, detailed in vitro, in vivo, and clinical studies on the mechanism of Astragalus membranaceus in peritoneal metastatic cancer treatment are warranted.


Asunto(s)
Planta del Astrágalo , Neoplasias Peritoneales , Humanos , Astragalus propinquus/química , Neoplasias Peritoneales/tratamiento farmacológico , Planta del Astrágalo/química , Flavonoides/análisis , Polisacáridos/química , Microambiente Tumoral
8.
J Integr Plant Biol ; 65(4): 1041-1058, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36349965

RESUMEN

Both herbivory and jasmonic acid (JA) activate the biosynthesis of defensive metabolites in maize, but the mechanism underlying this remains unclear. We generated maize mutants in which ZmMYC2a and ZmMYC2b, two transcription factor genes important in JA signaling, were individually or both knocked out. Genetic and biochemical analyses were used to elucidate the functions of ZmMYC2 proteins in the maize response to simulated herbivory and JA. Compared with the wild-type (WT) maize, the double mutant myc2ab was highly susceptible to insects, and the levels of benzoxazinoids and volatile terpenes, and the levels of their biosynthesis gene transcripts, were much lower in the mutants than in the WT maize after simulated insect feeding or JA treatment. Moreover, ZmMYC2a and ZmMYC2b played a redundant role in maize resistance to insects and JA signaling. Transcriptome and Cleavage Under Targets and Tagmentation-Sequencing (CUT&Tag-Seq) analysis indicated that ZmMYC2s physically targeted 60% of the JA-responsive genes, even though only 33% of these genes were transcriptionally ZmMYC2-dependent. Importantly, CUT&Tag-Seq and dual luciferase assays revealed that ZmMYC2s transactivate the benzoxazinoid and volatile terpene biosynthesis genes IGPS1/3, BX10/11/12/14, and TPS10/2/3/4/5/8 by directly binding to their promoters. Furthermore, several transcription factors physically targeted by ZmMYC2s were identified, and these are likely to function in the regulation of benzoxazinoid biosynthesis. This work reveals the transcriptional regulatory landscapes of both JA signaling and ZmMYC2s in maize and provides comprehensive mechanistic insight into how JA signaling modulates defenses in maize responses to herbivory through ZmMYC2s.


Asunto(s)
Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Herbivoria , Zea mays , Animales , Benzoxazinas/metabolismo , Ciclopentanos/metabolismo , Insectos/fisiología , Oxilipinas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Adaptación Fisiológica/genética
9.
Plant Cell Environ ; 46(10): 3072-3089, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36207806

RESUMEN

Insect herbivory challenges plant survival, and coordination of the interactions between growth, herbivore resistance/tolerance is a key problem faced by plants. Based on field experiments into resistance to the Asian corn borer (ACB, Ostrinia furnacalis), we selected 10 inbred maize lines, of which five were resistant and five were susceptible to ACB. We conducted ACB larval bioassays, analysed defensive chemicals, phytohormones, and relative gene expression using RNA-seq and qPCR as well as agronomic traits, and found resistant lines had weaker inducibility, but were more resistant after ACB attack than susceptible lines. Resistance was related to high levels of major benzoxazinoids, but was not related to induced levels of JA or JA-Ile. Following combination analyses of transcriptome, metabolome and larval performance data, we discovered three benzoxazinoids biosynthesis-related transcription factors, NAC60, WRKY1 and WRKY46. Protoplast transformation analysis suggested that these may regulate maize defence-growth trade-offs by increasing levels of benzoxazinoids, JA and SA but decreasing IAA. Moreover, the resistance/tolerance-growth trade-offs were not observed in the 10 lines, and genotype-specific metabolic and genetic features probably eliminated the trade-offs. This study highlights the possibility of breeding maize varieties simultaneously with improved defences and higher yield under complex field conditions.


Asunto(s)
Mariposas Nocturnas , Zea mays , Animales , Zea mays/genética , Zea mays/metabolismo , Benzoxazinas/metabolismo , Mariposas Nocturnas/fisiología , Larva , Genotipo , Herbivoria
10.
J Exp Bot ; 73(22): 7611-7627, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36214841

RESUMEN

Herbivory activates responses in local and systemic leaves, and the glutamate receptor-like genes GLR3.3 and GLR3.6 are critical in leaf-to-leaf systemic signalling. However, whether and how these genes mediate plant systemic resistance to insects remain largely unexplored. We show that a piercing-sucking insect Myzus persicae (green peach aphid, GPA) or chewing insect Spodoptera litura (cotton leafworm, CLW) feeding-induced systemic defences were attenuated in the glr3.3 glr3.6 mutants. In response to herbivory from either insect, glr3.3 glr3.6 mutants exhibited reduced accumulation of the hormone jasmonic acid (JA) and defensive metabolites glucosinolates (GSs) in systemic (but not local) leaves. Transcriptome analysis indicated that GLR3.3 and GLR3.6 play an important role in regulating the transcriptional responses to GPA and simulated CLW feeding in both local and systemic leaves, including JA- and GS-related genes. Metabolome analysis also revealed that in response to GPA or simulated CLW feeding, GLR3.3 and GLR3.6 are involved in the regulation of various metabolites locally and systemically, including amino acids, carbohydrates, and organic acids. Taken together, this study provides new insights into the function of GLR3.3 and GLR3.6 in mediating transcripts and metabolites in local and systemic leaves under insect attack, and highlights their role in regulating insect resistance in systemic leaves.


Asunto(s)
Arabidopsis , Animales , Arabidopsis/genética , Insectos , Receptores de Glutamato
11.
Plant Cell ; 34(5): 1600-1620, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35166827

RESUMEN

The nucleotide-binding, leucine-rich receptor (NLR) protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1), an immune receptor, interacts with HOPZ-ETI-DEFICIENT 1 (ZED1)-related kinases (ZRKs) and AVRPPHB SUSCEPTIBLE 1-like proteins to form a pentameric resistosome, triggering immune responses. Here, we show that ZAR1 emerged through gene duplication and that ZRKs were derived from the cell surface immune receptors wall-associated protein kinases (WAKs) through the loss of the extracellular domain before the split of eudicots and monocots during the Jurassic period. Many angiosperm ZAR1 orthologs, but not ZAR1 paralogs, are capable of oligomerization in the presence of AtZRKs and triggering cell death, suggesting that the functional ZAR1 resistosome might have originated during the early evolution of angiosperms. Surprisingly, inter-specific pairing of ZAR1 and AtZRKs sometimes results in the formation of a resistosome in the absence of pathogen stimulation, suggesting within-species compatibility between ZAR1 and ZRKs as a result of co-evolution. Numerous concerted losses of ZAR1 and ZRKs occurred in angiosperms, further supporting the ancient co-evolution between ZAR1 and ZRKs. Our findings provide insights into the origin of new plant immune surveillance networks.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas NLR/metabolismo , Fosfotransferasas/metabolismo , Inmunidad de la Planta/fisiología
12.
Plant J ; 108(6): 1609-1623, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34647389

RESUMEN

Mycoheterotrophic and parasitic plants are heterotrophic and parasitize on fungi and plants, respectively, to obtain nutrients. Large-scale comparative genomics analysis has not been conducted in mycoheterotrophic or parasitic plants or between these two groups of parasites. We assembled a chromosome-level genome of the fully mycoheterotrophic plant Gastrodia elata (Orchidaceae) and performed comparative genomic analyses on the genomes of G. elata and four orchids (initial mycoheterotrophs), three parasitic plants (Cuscuta australis, Striga asiatica, and Sapria himalayana), and 36 autotrophs from various angiosperm lineages. It was found that while in the hemiparasite S. asiatica and initial mycoheterotrophic orchids, approximately 4-5% of the conserved orthogroups were lost, the fully heterotrophic G. elata and C. australis both lost approximately 10% of the conserved orthogroups, indicating that increased heterotrophy is positively associated with gene loss. Importantly, many genes that are essential for autotrophs, including those involved in photosynthesis, the circadian clock, flowering time regulation, immunity, nutrient uptake, and root and leaf development, were convergently lost in both G. elata and C. australis. The high-quality genome of G. elata will facilitate future studies on the physiology, ecology, and evolution of mycoheterotrophic plants, and our findings highlight the critical role of gene loss in the evolution of plants with heterotrophic lifestyles.


Asunto(s)
Gastrodia/genética , Genes de Plantas , Genoma de Planta , Procesos Heterotróficos/genética , Cromosomas de las Plantas , Relojes Circadianos/genética , Evolución Molecular , Flores/genética , Flores/fisiología , Gastrodia/fisiología , Genómica , Intrones , Magnoliopsida/genética , Magnoliopsida/fisiología , Anotación de Secuencia Molecular , Familia de Multigenes , Fotosíntesis/genética , Inmunidad de la Planta/genética , Striga/genética , Striga/fisiología , Simbiosis/genética
13.
J Ethnopharmacol ; 275: 114075, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33823165

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The strongly scented genus Adenosma R. Brown (Plantaginaceae) comprises between 26 and 29 species with mainly southeast Asian distributions. Several species are used traditionally, mostly in Asian countries, for medicinal purposes including the treatment of colds and tumors, as well as stomach, liver, and skin disorders. Some species are also used as insecticides and/or insect repellents against mosquitoes or fleas. AIM OF THE REVIEW: Although the potential health benefits of Adenosma spp. are not yet well-known or well-studied in modern medicine, the aim of the present review is to provide a critical appraisal of the current state of knowledge regarding the geographical distribution, traditional uses, phytochemistry, phytochemicals and biological properties of Adenosma spp. MATERIALS AND METHODS: Electronic databases (Web of Science, Science Direct, Google Scholar, Scifinder, Microsoft Academic, eFloras), Biodiversity Heritage Library (BHL), and the China National Knowledge Infrastructure (CNKI), were searched using the key words "Adenosma", "", "", "", "nhân tran", as well as the scientific names of the species, and a library search was also conducted for articles and books related to the subject published in English, Chinese or Vietnamese, as well as Ph.D. theses and M.Sc. dissertations published before April 2020. RESULTS: Adenosma spp. is traditionally used to treat gastrointestinal disorders, hepatitis, colds, and skin problems. Phenolic acids, flavonoids, and terpenoids constitute the main phytochemicals in these plants. Several evaluations based on bioassays have demonstrated biological activity for Adenosma spp., including antidiabetic, anticancer, and insecticidal activities; extracts and isolated compounds have also shown effective biological activity. However, current research has focused only on a few species, and on limited geographical regions, mainly in China and Vietnam. More and broader ethnopharmacological studies are therefore needed to provide further evidence of the health benefits of these plants. CONCLUSIONS: Adenosma spp. are plants rich in essential oils, particularly terpenoids, and the crude extracts have valuable bioactive properties. Certain lines of research based on cell lines and animal models show the potential value in different areas of health management. Further investigation into the traditional knowledge in southeast Asian and Pacific island regions, as well as the into the toxicity and identity of the bioactive compounds and their mechanisms of action is necessary.


Asunto(s)
Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantaginaceae/química , Animales , Asia , Humanos , Medicina Tradicional/métodos , Fitoquímicos/efectos adversos , Fitoquímicos/uso terapéutico , Extractos Vegetales/efectos adversos , Extractos Vegetales/uso terapéutico
14.
J Exp Bot ; 72(10): 3792-3805, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33647931

RESUMEN

Biotic and abiotic cues can trigger priming in plants, which enables plants to respond to subsequent challenge with stronger and/or faster responses. It is well known that herbivory activates defense-related responses in systemic leaves. However, little is known about whether insect feeding activates priming in systemic leaves. To determine whether and how herbivory induces priming in maize systemic leaves, a combination of insect bioassays, phytohormone and defense metabolite quantification, and genetic and transcriptome analyses were performed. Actual and simulated Mythimna separata herbivory in maize local leaves primed the systemic leaves for enhanced accumulation of jasmonic acid and benzoxazinoids and increased resistance to M. separata. Activation of priming in maize systemic leaves depends on both the duration of simulated herbivory and perception of M. separata oral secretions in the local leaves, and genetic analysis indicated that jasmonic acid and benzoxazinoids mediate the primed defenses in systemic leaves. Consistently, in response to simulated herbivory, the primed systemic leaves exhibited a large number of genes that were uniquely regulated or showed further up- or down-regulation compared with the non-primed systemic leaves. This study provides new insight into the regulation and ecological function of priming in maize.


Asunto(s)
Herbivoria , Mariposas Nocturnas , Animales , Ciclopentanos , Oxilipinas , Reguladores del Crecimiento de las Plantas , Hojas de la Planta , Zea mays/genética
15.
New Phytol ; 229(4): 2273-2287, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32996127

RESUMEN

2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and DIMBOA-glucoside (DIMBOA-Glc) are anti-insect benzoxazinoids in maize, yet very little information is known about how they are regulated. Reverse genetics, kinase activity analysis, phytohormone and DIMBOA/DIMBOA-Glc quantification, bioassays and transcriptome analysis were employed to study the function of ZmMPK6, a mitogen-activated protein kinase, in maize response to herbivory. ZmMPK6 was rapidly activated by wounding and simulated herbivory. Silencing ZmMPK6 in maize A188 compromised simulated herbivory-induced ethylene levels but not those of jasmonic acid or salicylic acid, and the ZmMPK6-silenced plants exhibited elevated DIMBOA/DIMBOA-Glc and insect resistance. An ethylene complementation experiment revealed that ZmMPK6 repressed the accumulation of DIMBOA/DIMBOA-Glc in an ethylene-dependent manner. Transcriptome analysis revealed that ZmMPK6 might meditate the transcription of BX1 by controlling a MYB transcription factor that is likely to be located in the ethylene signalling pathway and, furthermore, ZmMPK6 and ethylene signalling also specifically and commonly regulate the transcription of other benzoxazinoid biosynthetic genes. We also show that different maize lines have very different responses to simulated herbivory in terms of ZmMPK6 activation, ethylene emission and benzoxazinoid levels. These results uncover that ZmMPK6 and ethylene pathway are novel repressors of DIMBOA/DIMBOA-Glc and provide new insight into the regulatory mechanisms underlying these two pathways.


Asunto(s)
Benzoxazinas , Zea mays , Animales , Etilenos , Glucósidos , Insectos , Zea mays/genética
16.
Nat Plants ; 6(5): 511-521, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32393879

RESUMEN

Compound leaves show more complex patterns than simple leaves, and this is mainly because of a specific morphogenetic process (leaflet initiation and arrangement) that occurs during their development. How the relevant morphogenetic activity is established and modulated to form a proper pattern of leaflets is a central question. Here we show that the trifoliate leaf pattern of the model leguminous plant Medicago truncatula is controlled by the BEL1-like homeodomain protein PINNATE-LIKE PENTAFOLIATA1 (PINNA1). We identify PINNA1 as a determinacy factor during leaf morphogenesis that directly represses transcription of the LEAFY (LFY) orthologue SINGLE LEAFLET1 (SGL1), which encodes an indeterminacy factor key to the morphogenetic activity maintenance. PINNA1 functions alone in the terminal leaflet region and synergizes with another determinacy factor, the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), in the lateral leaflet regions to define the spatiotemporal expression of SGL1, leading to an elaborate control of morphogenetic activity. This study reveals a framework for trifoliate leaf-pattern formation and sheds light on mechanisms generating diverse leaf forms.


Asunto(s)
Medicago truncatula/metabolismo , Hojas de la Planta/metabolismo , Western Blotting , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/fisiología , Hibridación in Situ , Medicago truncatula/anatomía & histología , Medicago truncatula/crecimiento & desarrollo , Filogenia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Nicotiana
17.
Mol Plant ; 13(5): 793-801, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32194243

RESUMEN

Plants utilize nucleotide-binding, leucine-rich repeat receptors (NLRs) to detect pathogen effectors, leading to effector-triggered immunity. The NLR ZAR1 indirectly recognizes the Xanthomonas campestris pv. campestris effector AvrAC and Pseudomonas syringae effector HopZ1a by associating with closely related receptor-like cytoplasmic kinase subfamily XII-2 (RLCK XII-2) members RKS1 and ZED1, respectively. ZAR1, RKS1, and the AvrAC-modified decoy PBL2UMP form a pentameric resistosome in vitro, and the ability of resistosome formation is required for AvrAC-triggered cell death and disease resistance. However, it remains unknown whether the effectors induce ZAR1 oligomerization in the plant cell. In this study, we show that both AvrAC and HopZ1a can induce oligomerization of ZAR1 in Arabidopsis protoplasts. Residues mediating ZAR1-ZED1 interaction are indispensable for HopZ1a-induced ZAR1 oligomerization in vivo and disease resistance. In addition, ZAR1 residues required for the assembly of ZAR1 resistosome in vitro are also essential for HopZ1a-induced ZAR1 oligomerization in vivo and disease resistance. Our study provides evidence that pathogen effectors induce ZAR1 resistosome formation in the plant cell and that the resistosome formation triggers disease resistance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Inmunidad de la Planta , Multimerización de Proteína , Pseudomonas syringae/fisiología , Xanthomonas/fisiología , Proteínas de Arabidopsis/química , Proteínas Portadoras/química , Unión Proteica , Estructura Secundaria de Proteína , Protoplastos/metabolismo
18.
Funct Integr Genomics ; 20(1): 133-149, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31414312

RESUMEN

Plants can regenerate new individuals under appropriate culture conditions. Although the molecular basis of shoot regeneration has steadily been unraveled, the role of age-dependent DNA methylation status in the regulation of explant regeneration remains practically unknown. Here, we established an effective auxin/cytokinin-induced shoot regeneration system for the resurrection plant Boea hygrometrica via direct organogenesis and observed that regeneration was postponed with increasing age of donor plants. Global transcriptome analysis revealed significant upregulation of genes required for hormone signaling and phenylpropanoid biosynthesis and downregulation of photosynthetic genes during regeneration. Transcriptional changes in the positive/negative regulators and cell wall-related proteins involved in plant regeneration, such as ELONGATED HYPOCOTYL5 (HY5), LATERAL ORGAN BOUNDARIES DOMAIN, SHOOT-MERISTEMLESS, and WUSCHEL, were associated with the regeneration process. Comparison of DNA methylation profiling between leaves from young seedlings (YL) and mature plants (ML) revealed increased asymmetrical methylation in ML, which was predominantly distributed in promoter regions of genes, such as HY5 and a member of ABA-responsive element (ABRE) binding protein/ABRE binding factor, as well as genes encoding glycine-rich cell wall structural protein, CENTRORADIALIS-like protein, and beta-glucosidase 40-like essential for shoot meristem and cell wall architecture. Their opposite transcription response in ML explants during regeneration compared with those from YL demonstrated the putative involvement of DNA methylation in regeneration. Moreover, a significant lower expression of DNA glycosylase-lyase required for DNA demethylation in ML was coincident with its postponed regeneration compared with those in YL. Taken together, our results suggest a role of promoter demethylation in B. hygrometrica regeneration.


Asunto(s)
Metilación de ADN , Magnoliopsida/genética , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genoma de Planta , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Brotes de la Planta/fisiología , Regeneración/genética , Plantones/genética , Transcriptoma
19.
Mol Plant ; 13(4): 573-585, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31812691

RESUMEN

Cuscuta species (dodders) are holoparasites that totally rely on host plants to survive. Although various mobile proteins have been identified to travel within a plant, whether and to what extent protein transfer between Cuscuta and host plants remain unclear. We found that hundreds to more than 1500 proteins were transferred between Cuscuta and the host plants Arabidopsis and soybean, and hundreds of inter-plant mobile proteins were even detected in the seeds of Cuscuta and the host soybean. Different hosts bridge-connected by dodder were also found to exchange hundreds of proteins. Quantitatively, the mobile proteins represent a few to more than 10% of the proteomes of foreign plants. Using Arabidopsis plants expressing different reporter proteins, we further showed that these reporter proteins could travel between plants and, importantly, retained their activity in the foreign plants. Comparative analysis between the inter-plant mobile proteins and mRNAs indicated that the majority of mobile proteins were not de novo synthesized from the translocated mRNAs, but bona fide mobile proteins. We propose that large-scale inter-plant protein translocation may play an important role in the interactions between host plants and dodder and even among the dodder bridge-connected hosts.


Asunto(s)
Arabidopsis/parasitología , Cuscuta/fisiología , Glycine max/parasitología , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Cuscuta/metabolismo , Interacciones Huésped-Parásitos , Plantas Modificadas Genéticamente , Transporte de Proteínas , Proteómica , ARN Mensajero/metabolismo , Semillas/metabolismo , Glycine max/metabolismo
20.
Plant Methods ; 15: 144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798670

RESUMEN

BACKGROUND: Insect herbivory poses a major threat to maize. Benzoxazinoids are important anti-insect secondary metabolites in maize, whose biosynthetic pathway has been extensively studied. However, yet little is known about how benzoxazinoids are regulated in maize, partly due to lack of mutant resources and recalcitrance to genetic transformation. Transient systems based on mesophyll- or cultured cell-derived protoplasts have been exploited in several plant species and have become a powerful tool for rapid or high-throughput assays of gene functions. Nevertheless, these systems have not been exploited to study the regulation of secondary metabolites. RESULTS: A protocol for isolation of protoplasts from etiolated maize seedlings and efficient transfection was optimized. Furthermore, a 10-min-run-time and highly sensitive HPLC-MS method was established to rapidly detect and quantify maize benzoxazinoids. Coupling maize protoplast transfection and HPLC-MS, we screened a few genes potentially regulating benzoxazinoid biosynthesis using overexpression or silencing by artificial microRNA technology. CONCLUSIONS: Combining the power of maize protoplast transfection and HPLC-MS analysis, this method allows rapid screening for the regulatory and biosynthetic genes of maize benzoxazinoids in protoplasts, before the candidates are selected for in planta functional analyses. This method can also be applied to study the biosynthesis and regulation of other secondary metabolites in maize and secondary metabolites in other plant species, including those not amenable to transformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...