Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Affect Disord ; 348: 283-296, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159656

RESUMEN

AIMS: To assess the effect of the translocator protein 18 kDa (TSPO) on postpartum depression and explore its mechanism. METHODS: Postpartum depression (PPD) mouse model was established, and flow cytometry, immunofluorescence, Western blot analysis, real-time quantitative PCR, adeno-associated virus (AAV), co-immunoprecipitation-mass spectrometry and immunofluorescence co-staining were used to detect the effect of TSPO ligand ZBD-2 on PPD mice. RESULTS: ZBD-2 inhibits the overactivation of microglia in the hippocampus and amygdala of PPD model mice. ZBD-2 not only inhibited the inflammation but also repressed the burst of reactive oxygen species (ROS) and mitochondrial ROS (mtROS). Meanwhile, ZBD-2 protects mitochondria from LPS-induced damages through inhibiting the influx of calcium. ZBD-2 modulated the calcium influx by increasing the level of translocase of the outer mitochondrial membrane 40 (TOM40) and reducing the interaction of TSPO and TOM40. In addition, the effect of ZBD-2 was partially dependent on anti-oxidative process. Knockdown of TOM40 by adeno-associated virus (AAV) in the hippocampus or amygdala dramatically reduced the effect of ZBD-2 on PPD, indicating that TOM40 mediates the effect of ZBD-2 on PPD. CONCLUSIONS: TOM40 is required for the effect of ZBD-2 on treating anxiety and depression in PPD mice. This study reveals the role of microglia TSPO in PPD development and provides the new therapeutic strategy for PPD.


Asunto(s)
Depresión Posparto , Microglía , Animales , Femenino , Ratones , Calcio/metabolismo , Proteínas Portadoras , Depresión Posparto/tratamiento farmacológico , Depresión Posparto/metabolismo , Homeostasis , Microglía/metabolismo , Membranas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de GABA/metabolismo
2.
Small Methods ; 7(11): e2300730, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37712212

RESUMEN

Cell-cell interaction is one of the major modalities for transmitting information between cells and activating the effects of functional cells. However, the construction of high-throughput analysis technologies from cell omics focusing on the impact of interactions of functional cells on targets has been relatively unexplored. Here, they propose a droplet-based microfluidic platform for cell-cell interaction sequencing (c-c-seq) and screening in vitro to address this challenge. A class of interacting cells is pre-labeled using cell molecular tags, and additional single-cell sequencing reagents are introduced to quickly form functional droplet mixes. Lastly, gene expression analysis is used to deduce the impact of the interaction, while molecular sequence tracing identifies the type of interaction. Research into the active effect between antigen-presenting cells and T cells, one of the most common cell-to-cell interactions, is crucial for the advancement of cancer therapy, particularly T cell receptor-engineered T cell therapy. As it allows for high throughput, this platform is superior to well plates as a research platform for cell-to-cell interactions. When combined with the next generation of sequencing, the platform may be able to more accurately evaluate interactions between epitopes and receptors and verify their functional relevance.


Asunto(s)
Microfluídica , Transcriptoma , Transcriptoma/genética , Perfilación de la Expresión Génica , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo
3.
J Clin Invest ; 133(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712419

RESUMEN

Hormone replacement therapy (HRT) is not recommended for treating learning and memory decline in menopausal women because it exerts adverse effects by activating classic estrogen receptors ERα and ERß. The membrane estrogen receptor G protein-coupled receptor 30 (GPR30) has been reported to be involved in memory modulation; however, the underlying mechanisms are poorly understood. Here, we found that GPR30 deletion in astrocytes, but not in neurons, impaired learning and memory in female mice. Astrocytic GPR30 depletion induced A1 phenotype transition, impairing neuronal function. Further exploration revealed that Praja1 (PJA1), a RING ubiquitin ligase, mediated the effects of astrocytic GPR30 on learning and memory by binding to Serpina3n, which is a molecular marker of neuroinflammation in astrocytes. GPR30 positively modulated PJA1 expression through the CREB signaling pathway in cultured murine and human astrocytes. Additionally, the mRNA levels of GPR30 and PJA1 were reduced in exosomes isolated from postmenopausal women while Serpina3n levels were increased in the plasma. Together, our findings suggest a key role for astrocytic GPR30 in the learning and memory abilities of female mice and identify GPR30/PJA1/Serpina3n as potential therapeutic targets for learning and memory loss in peri- and postmenopausal women.


Asunto(s)
Astrocitos , Receptores de Estrógenos , Animales , Femenino , Humanos , Ratones , Aprendizaje , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas
4.
Anal Chem ; 95(25): 9697-9705, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37300490

RESUMEN

T-cell receptor (TCR)-engineered T cells can precisely recognize a broad repertoire of targets derived from both intracellular and surface proteins of tumor cells. TCR-T adoptive cell therapy has shown safety and promising efficacy in solid tumor immunotherapy. However, antigen-specific functional TCR screening is time-consuming and expensive, which limits its application clinically. Here, we developed a novel integrated antigen-TCR screening platform based on droplet microfluidic technology, enabling high-throughput peptide-major histocompatibility complex (pMHC)-to-TCR paired screening with a high sensitivity and low background signal. We introduced DNA barcoding technology to label peptide antigen candidate-loaded antigen-presenting cells and Jurkat reporter cells to check the specificity of pMHC-TCR candidates. Coupled with the next-generation sequencing pipeline, interpretation of the DNA barcodes and the gene expression level of the Jurkat T-cell activation pathway provided a clear peptide-MHC-TCR recognition relationship. Our proof-of-principle study demonstrates that the platform could achieve pMHC-TCR paired high-throughput screening, which is expected to be used in the cross-reactivity and off-target high-throughput paired testing of candidate pMHC-TCRs in clinical applications.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Microfluídica , Humanos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos , Péptidos/metabolismo
5.
Aging Dis ; 14(4): 1425-1440, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163424

RESUMEN

The senescence of mesenchymal stem cells (MSCs) impairs their regenerative capacity to maintain tissue homeostasis. Numerous studies are focusing on the interventions and mechanisms to attenuate the senescence of MSCs. C-phycocyanin (C-PC) is reported to have multiple functions such as antitumor, antioxidation, anti-inflammation and anti-aging roles, but there is little research about the effects of C-PC on the senescence of MSCs. Here we investigated the roles and mechanism of C-PC on MSCs senescence. In vitro results showed that C-PC could reduce senescence, enhance proliferation, promote the adipogenic and osteogenic differentiation in senescent MSCs induced by oxidative stress. In vivo D-Galactose (D-Gal) induced rats aging models showed C-PC also increased the viability and differentiation of intrinsic senescent bone marrow derived MSCs (BMSCs). Furthermore, C-PC also decreased the levels of oxidative stress markers ROS or MDA, elevated the SOD activity, and increased the anti-inflammatory factors. Proteomic chip analysis showed that C-PC interacted with ZDHHC5, and their interaction was verified by pull down assay. Overexpression of ZDHHC5 aggravated the senescence of MSCs and greatly lessened the beneficial effects of C-PC on senescence. In addition, we found ZDHHC5 regulated autophagy by altering LC3, Beclin1 and PI3K/AKT/mTOR pathway. In summary, our data indicated that C-PC ameliorates the senescence of MSCs through zinc finger Asp-His-His-Cys (DHHC) domain-containing protein 5 (ZDHHC5) mediated autophagy via PI3K/AKT/mTOR pathway. The present study uncovered the key role of autophagy in MSCs senescence and PI3K/AKT/mTOR pathway may be a potential target for anti-senescence studies of MSCs.

6.
Insects ; 14(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835750

RESUMEN

Monochamus alternatus is a serious trunk-boring pest and is the most important and effective vector of the pine wood nematode Bursaphelenchus xylophilus, which causes pine wilt disease. The pine wilt disease poses a serious threat to forest vegetation and ecological security in the Qinling-Daba Mountains and their surrounding areas. In order to clarify whether the population density of M. alternatus larvae is related to the host preference of M. alternatus adults, we investigated the population density of M. alternatus overwintering larvae and explored the host preference of M. alternatus adults on Pinus tabuliformis, P. armandii, and P. massoniana. The results show that the population density of M. alternatus larvae was significantly higher on P. armandii than those on P. massoniana and P. tabuliformis. The development of M. alternatus larvae was continuous according to the measurements of the head capsule width and the pronotum width. Adults of M. alternatus preferred to oviposit on P. armandii rather than on P. massoniana and P. tabuliformis. Our results indicate that the difference in the population density of M. alternatus larvae between different host plants was due to the oviposition preference of M. alternatus adults. In addition, the instars of M. alternatus larvae could not be accurately determined, because Dyar's law is not suitable for continuously developing individuals. This study could provide theoretical basis for the comprehensive prevention and control of the pine wilt disease in this region and adjacent areas.

7.
Bioengineering (Basel) ; 9(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36354585

RESUMEN

The rapid promotion of single-cell omics in various fields has begun to help solve many problems encountered in research, including precision medicine, prenatal diagnosis, and embryo development. Meanwhile, single-cell techniques are also constantly updated with increasing demand. For some specific target cells, the workflow from droplet screening to single-cell sequencing is a preferred option and should reduce the impact of operation steps, such as demulsification and cell recovery. We developed an all-in-droplet method integrating cell encapsulation, target sorting, droplet picoinjection, and single-cell transcriptome profiling on chips to achieve labor-saving monitoring of TCR-T cells. As a proof of concept, in this research, TCR-T cells were encapsulated, sorted, and performed single-cell transcriptome sequencing (scRNA-seq) by injecting reagents into droplets. It avoided the tedious operation of droplet breakage and re-encapsulation between droplet sorting and scRNA-seq. Moreover, convenient device operation will accelerate the progress of chip marketization. The strategy achieved an excellent recovery performance of single-cell transcriptome with a median gene number over 4000 and a cross-contamination rate of 8.2 ± 2%. Furthermore, this strategy allows us to develop a device with high integrability to monitor infused TCR-T cells, which will promote the development of adoptive T cell immunotherapy and their clinical application.

8.
Neuroscience ; 498: 289-299, 2022 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-35872251

RESUMEN

The beneficial effects of exercise on human brain function have been demonstrated in previous studies. Myokines secreted by muscle have attracted increasing attention because of their bridging role between exercise and brain health. Regulated by PPARγ coactivator 1α, fibronectin type III domain-containing protein 5 releases irisin after proteolytic cleavage. Irisin, a type of myokine, is secreted during exercise, which induces white adipose tissue browning and relates to energy metabolism. Recently, irisin has been shown to exert a protective effect on the central nervous system. Irisin secretion triggers an increase in brain-derived neurotrophic factor levels in the hippocampus, contributing to the amelioration of cognition impairments. Irisin also plays an important role in the survival, differentiation, growth, and development of neurons. This review summarizes the role of irisin in neurodegenerative diseases and other neurological disorders. As a novel positive mediator of exercise in the brain, irisin may effectively prevent or decelerate the progress of neurodegenerative diseases in models and also improve cognitive functions. We place emphasis herein on the potential of irisin for prevention rather than treatment in neurodegenerative diseases. In ischemic diseases, irisin can alleviate the pathophysiological processes associated with stroke. Meanwhile, irisin has anxiolytic and antidepressant effects. The potential therapeutic effects of irisin in epilepsy and pain have been initially revealed. Due to the pleiotropic and beneficial properties of irisin, the possibility of irisin treating other neurological diseases could be gradually explored in the future.


Asunto(s)
Fibronectinas , Enfermedades Neurodegenerativas , Ejercicio Físico , Hipocampo , Humanos , Músculo Esquelético , Factores de Transcripción
9.
Phytother Res ; 36(10): 3932-3948, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35801985

RESUMEN

Posttraumatic stress disorder (PTSD) is one of the most common psychiatric diseases, which is characterized by the typical symptoms such as re-experience, avoidance, and hyperarousal. However, there are few drugs for PTSD treatment. In this study, conditioned fear and single-prolonged stress were employed to establish PTSD mouse model, and we investigated the effects of Tanshinone IIA (TanIIA), a natural product isolated from traditional Chinese herbal Salvia miltiorrhiza, as well as the underlying mechanisms in mice. The results showed that the double stress exposure induced obvious PTSD-like symptoms, and TanIIA administration significantly decreased freezing time in contextual fear test and relieved anxiety-like behavior in open field and elevated plus maze tests. Moreover, TanIIA increased the spine density and upregulated synaptic plasticity-related proteins as well as activated CREB/BDNF/TrkB signaling pathway in the hippocampus. Blockage of CREB remarkably abolished the effects of TanIIA in PTSD model mice and reversed the upregulations of p-CREB, BDNF, TrkB, and synaptic plasticity-related protein induced by TanIIA. The molecular docking simulation indicated that TanIIA could interact with the CREB-binding protein. These findings indicate that TanIIA ameliorates PTSD-like behaviors in mice by activating the CREB/BDNF/TrkB pathway, which provides a basis for PTSD treatment.


Asunto(s)
Productos Biológicos , Factor Neurotrófico Derivado del Encéfalo , Abietanos , Animales , Ansiedad/tratamiento farmacológico , Productos Biológicos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a CREB/metabolismo , Proteína de Unión a CREB/farmacología , Miedo , Hipocampo/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Transducción de Señal
10.
Brain Res Bull ; 188: 11-20, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35850187

RESUMEN

Exercise not only builds up our body but also improves cognitive function. Skeletal muscle secretes myokine during exercise as a large reservoir of signaling molecules, which can be considered as a medium between exercise and brain health. Irisin is a circulating myokine derived from the Fibronectin type III domain-containing protein 5 (FNDC5). Irisin regulates energy metabolism because it can stimulate the "Browning" of white adipose tissue. It has been reported that irisin can cross the blood-brain barrier and increase the expression of a brain-derived neurotrophic factor (BDNF) in the hippocampus, which improves learning and memory. In addition, the neuroprotective effect of irisin has been verified in various disease models. Therefore, this review summarizes how irisin plays a neuroprotective role, including its signal pathway and mechanism. In addition, we will briefly discuss the therapeutic potential of irisin for neurological diseases.


Asunto(s)
Fibronectinas , Fármacos Neuroprotectores , Encéfalo/metabolismo , Ejercicio Físico/fisiología , Fibronectinas/metabolismo , Músculo Esquelético/metabolismo , Fármacos Neuroprotectores/metabolismo , Factores de Transcripción/metabolismo
11.
Front Endocrinol (Lausanne) ; 13: 887238, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712239

RESUMEN

Background: Chronic pain is defined as pain that persists typically for a period of over six months. Chronic pain is often accompanied by an anxiety disorder, and these two tend to exacerbate each other. This can make the treatment of these conditions more difficult. Glucose-dependent insulinotropic polypeptide (GIP) is a member of the incretin hormone family and plays a critical role in glucose metabolism. Previous research has demonstrated the multiple roles of GIP in both physiological and pathological processes. In the central nervous system (CNS), studies of GIP are mainly focused on neurodegenerative diseases; hence, little is known about the functions of GIP in chronic pain and pain-related anxiety disorders. Methods: The chronic inflammatory pain model was established by hind paw injection with complete Freund's adjuvant (CFA) in C57BL/6 mice. GIP receptor (GIPR) agonist (D-Ala2-GIP) and antagonist (Pro3-GIP) were given by intraperitoneal injection or anterior cingulate cortex (ACC) local microinjection. Von Frey filaments and radiant heat were employed to assess the mechanical and thermal hypersensitivity. Anxiety-like behaviors were detected by open field and elevated plus maze tests. The underlying mechanisms in the peripheral nervous system and CNS were explored by GIPR shRNA knockdown in the ACC, enzyme-linked immunosorbent assay, western blot analysis, whole-cell patch-clamp recording, immunofluorescence staining and quantitative real-time PCR. Results: In the present study, we found that hind paw injection with CFA induced pain sensitization and anxiety-like behaviors in mice. The expression of GIPR in the ACC was significantly higher in CFA-injected mice. D-Ala2-GIP administration by intraperitoneal or ACC local microinjection produced analgesic and anxiolytic effects; these were blocked by Pro3-GIP and GIPR shRNA knockdown in the ACC. Activation of GIPR inhibited neuroinflammation and activation of microglia, reversed the upregulation of NMDA and AMPA receptors, and suppressed the enhancement of excitatory neurotransmission in the ACC of model mice. Conclusions: GIPR activation was found to produce analgesic and anxiolytic effects, which were partially due to attenuation of neuroinflammation and inhibition of excitatory transmission in the ACC. GIPR may be a suitable target for treatment of chronic inflammatory pain and pain-related anxiety.


Asunto(s)
Dolor Crónico , Receptores de la Hormona Gastrointestinal , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Adyuvante de Freund , Polipéptido Inhibidor Gástrico/fisiología , Giro del Cíngulo/metabolismo , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño , Receptores de la Hormona Gastrointestinal/agonistas , Receptores de la Hormona Gastrointestinal/antagonistas & inhibidores , Receptores de la Hormona Gastrointestinal/metabolismo
12.
J Prosthet Dent ; 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35491260

RESUMEN

STATEMENT OF PROBLEM: Loss of retention is a clinical complication for fixed partial dentures (FPDs). However, a method sensitive enough to measure the early retention loss of FPDs is lacking. PURPOSE: The purpose of this in vitro and finite element analysis (FEA) study was to determine whether resonance frequency analysis (RFA) with a newly developed system can detect lack of FPD retention caused by cement loss. MATERIALS AND METHODS: Two evaluation methods were used: RFA of an in vitro model of a 3-unit FPD from the second premolar to the second molar and FEA by using a simplified model. The in vitro model was used to evaluate 4 connecting conditions: both crowns cemented, only the premolar crown cemented, only the molar crown cemented, and both crowns uncemented. Tapping stimulation (16 impulsive forces, 4 Hz) was directly applied to the buccal side of the second molar or the second premolar, and an attached 3D accelerometer sensor was used to record the resonance frequency (RF) of the tapped tooth. The amplitude, frequency, Q-value, and total area under the curve (AUC) of the RF values in the buccolingual direction were compared between connecting conditions. The FEA was done by using a simplified model of a 3-unit FPD with similar connecting conditions as the in vitro model study, and the RF amplitude and frequency of each tooth were calculated. Statistical evaluation included 1-way analysis of variance and the Tukey HSD test to compare the differences among each connecting condition under each parameter for measurement sites on the molar and the premolar, respectively (α=.05). RESULTS: For both the molar and premolar measurements in both the in vitro and FEA models, when the measurement site was on the uncemented tooth, the amplitude of RF-1 increased, the Q-value of RF-2 decreased, and the area under the curve increased (P<.05). CONCLUSIONS: The same 3 trends found between the measurement sites of the in vitro study and FEA indicated that RFA may be useful for detecting an FPD with loosening caused by cement loss, even partial cement loss.

13.
Brain Res Bull ; 181: 77-86, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35093468

RESUMEN

Hormone therapy (HT) has failed to improve learning and memory in postmenopausal women according to recent clinical studies; however, the reason for failure of HT in improving cognitive performance is unknown. In our research, we found cognitive flexibility was improved by 17ß-Estradiol (E2) in mice 1 week after ovariectomy (OVXST), but not in mice 3 months after ovariectomy (OVXLT). Isobaric tags for relative and absolute quantitation (iTRAQ) revealed increased cannabinoid receptor interacting protein 1 (CNRIP1) in E2-treated OVXLT mice compared with E2-treated OVXST mice. Adeno-associated virus 2/9 (AAV2/9) delivery of Cnrip1 short-hairpin small interfering RNA (Cnrip1-shRNA) rescued the impaired cognitive flexibility in E2 treated OVXLT mice. This effect is dependent on CB1 function, which could be blocked by AM251-a CB1 antagonist. Our results indicated a new method to increasing cognitive flexibility in women receiving HT by disrupting CNRIP1.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Estradiol/farmacología , Terapia de Reemplazo de Hormonas , Corteza Prefrontal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ovariectomía , Piperidinas/farmacología , Posmenopausia , Pirazoles/farmacología , ARN Interferente Pequeño , Receptor Cannabinoide CB1/antagonistas & inhibidores
14.
Sci Total Environ ; 811: 152311, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34906579

RESUMEN

Vehicle exhaust, an important source of air pollution, is affected by many factors, including driving conditions, combustion efficiencies, and the usage of emission control devices. In this study, the Portable Emission Measurement System (PEMS) was used to test the emissions from China V and China VI heavy-duty diesel vehicles to evaluate the integrated effects of Selective Catalytic Reduction (SCR), velocity, and air-fuel ratio on carbon dioxide (CO2) and nitrogen oxide (NOx) emissions. Our results reveal that the average distance-based CO2 and CO emission factors at high velocities (50-90 km/h) are 25% and 61% lower than those at low velocities (less than 50 km/h). The use of SCR increases CO2 emissions in the range of 70-90 km/h (an average increase of 10.9%). In addition, SCR leads to a 55% NOx emission reduction at low velocities and 89% at high velocities, with an overall average reduction of 84%. We also find that SCR leads to a significant reduction in the correlation between NOx emissions and air-fuel ratio (0.76 vs 0.47 for China V truck; 0.72 vs 0.05 for China VI truck), but it does not cause a drastic reduction in the correlation coefficients between CO2 emissions and air-fuel ratio, which can be used to detect whether SCR is working effectively.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , China , Gases , Gasolina , Vehículos a Motor , Emisiones de Vehículos/análisis
15.
Nutrients ; 15(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36615696

RESUMEN

Depression is a frequent and serious comorbidity associated with diabetes which adversely affects prognosis and quality of life. Glucagon-like peptide-1 receptor (GLP-1R) agonists, widely used in the treatment of diabetes, are reported to exert neuroprotective effects in the central nervous system. Thus, we aim to evaluate whether GLP-1R agonist exendin-4 (EX-4) could alleviate depression-like behaviors in diabetic mice and to explore its underlying mechanism. The antidepressant effects of EX-4 were evaluated using behavioral tests in db/db mice. The effects of EX-4 on microglial pyroptosis and neuroinflammation were assessed in N9 microglial cells. EX-4 administration alleviated depression-like behaviors in diabetic db/db mice. GLP-1R activation by EX-4 significantly suppressed microglial pyroptosis and neuroinflammation by downregulation of gasdermin D (GSDMD) and interleukin (IL)-1ß in diabetic mice and lipopolysaccharide (LPS)-primed N9 microglia. Mechanistically, GLP-1R activation improved mitochondrial function and promoted mitophagy by decreasing the accumulation of mitochondrial reactive oxygen species (mtROS) and intracellular ROS production. EX-4 exhibits antidepressant effects in depression associated with diabetes in diabetic mice, which may be mediated by inhibiting microglial pyroptisis via promoting mitophagy. It is supposed that GLP-1R agonists may be a promising therapy in depression associated with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Microglía , Ratones , Animales , Receptor del Péptido 1 Similar al Glucagón , Piroptosis , Diabetes Mellitus Experimental/complicaciones , Depresión/tratamiento farmacológico , Depresión/etiología , Enfermedades Neuroinflamatorias , Mitofagia , Calidad de Vida , Exenatida/farmacología , Péptido 1 Similar al Glucagón , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
16.
Front Pharmacol ; 12: 735446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675807

RESUMEN

In recent years, with the development of nanomaterials, the research of drug delivery systems has become a new field of cancer therapy. Compared with conventional antitumor drugs, drug delivery systems such as drug nanoparticles (NPs) are expected to have more advantages in antineoplastic effects, including easy preparation, high efficiency, low toxicity, especially active tumor-targeting ability. Drug delivery systems are usually composed of delivery carriers, antitumor drugs, and even target molecules. At present, there are few comprehensive reports on a summary of drug delivery systems applied for tumor therapy. This review introduces the preparation, characteristics, and applications of several common delivery carriers and expounds the antitumor mechanism of different antitumor drugs in delivery carriers in detail which provides a more theoretical basis for clinical application of personalized cancer nanomedicine in the future.

17.
Neurosci Lett ; 765: 136284, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34624394

RESUMEN

Depression is a kind of common mental disorder associated with neuroinflammation, and astrocytes play a vital role in regulating and mediating neuroinflammation in central nervous system. Scutellarin has significant anti-inflammatory and neuroprotective effects. However, whether scutellarin exerts antidepressant effect remains unknown. In present study, it was found that scutellarin suppressed LPS-induced neuroinflammation in the hippocampus and alleviated depression-like behaviors in mice. In addition, scutellarin inhibited LPS-induced elevation of TNFα, IL-1ß, IL-6 and iNOS, and reversed the downregulation of IL-4 and BDNF in astrocytes in vitro. Furthermore, the activated TLR4/NF-κB pathway in LPS-treated astrocytes was suppressed by scutellarin. Collectively, these results suggest that scutellarin ameliorates depression-like behaviors induced by neuroinflammation partially through inhibiting the TLR4/NF-κB pathway in astrocytes.


Asunto(s)
Apigenina/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/inmunología , Depresión/inmunología , Glucuronatos/farmacología , Enfermedades Neuroinflamatorias/inmunología , Animales , Antiinflamatorios/farmacología , Hipocampo/efectos de los fármacos , Lipopolisacáridos/inmunología , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Brain Res Bull ; 172: 22-30, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33848615

RESUMEN

Neuroexcitotoxicity is a common feature in neuronal damage and neurodegenerative diseases. Our previous studies have confirmed that neuronal and astrocytic G­protein-coupled receptor 30 (GPR30) play a key role in neuroprotection in vivo and in vitro. Microglia are considered as immune cells in the central nervous system. However, the role of microglial GPR30 in neuroprotection against neuroexcitotoxicity remained unclear. In this study, MTT, Western blot, immunocytochemical staining, phagocytosis assay and wound healing assay were employed to detect the effect of GPR30 in N9 microglial cells after exposure to glutamate. We found that the treatment of GPR30 specific agonist G1 inhibited glutamate-induced proliferation and activation in N9 microglial cells. G1 inhibited M1 polarization, facilitated M2 polarization, and decreased over-phagocytosis but had no effect on migration ability in microglia. The result of neurons and microglia co-culture showed that the activation of microglial GPR30 protected neurons from excitotoxicity through the NF-κB/MAPK signaling pathways. Our findings suggested a key role of microglial GPR30 in excitatory neuronal damage and neurodegenerative diseases.


Asunto(s)
Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Técnicas de Cocultivo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Microglía/metabolismo , FN-kappa B/metabolismo , Neuronas/metabolismo , Fagocitosis/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...