Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38894604

RESUMEN

The release of AlphaFold2 has sparked a rapid expansion in protein model databases. Efficient protein structure retrieval is crucial for the analysis of structure models, while measuring the similarity between structures is the key challenge in structural retrieval. Although existing structure alignment algorithms can address this challenge, they are often time-consuming. Currently, the state-of-the-art approach involves converting protein structures into three-dimensional (3D) Zernike descriptors and assessing similarity using Euclidean distance. However, the methods for computing 3D Zernike descriptors mainly rely on structural surfaces and are predominantly web-based, thus limiting their application in studying custom datasets. To overcome this limitation, we developed FP-Zernike, a user-friendly toolkit for computing different types of Zernike descriptors based on feature points. Users simply need to enter a single line of command to calculate the Zernike descriptors of all structures in customized datasets. FP-Zernike outperforms the leading method in terms of retrieval accuracy and binary classification accuracy across diverse benchmark datasets. In addition, we showed the application of FP-Zernike in the construction of the descriptor database and the protocol used for the Protein Data Bank (PDB) dataset to facilitate the local deployment of this tool for interested readers. Our demonstration contained 590,685 structures, and at this scale, our system required only 4-9 s to complete a retrieval. The experiments confirmed that it achieved the state-of-the-art accuracy level. FP-Zernike is an open-source toolkit, with the source code and related data accessible at https://ngdc.cncb.ac.cn/biocode/tools/BT007365/releases/0.1, as well as through a webserver at http://www.structbioinfo.cn/.


Asunto(s)
Bases de Datos de Proteínas , Programas Informáticos , Algoritmos , Conformación Proteica , Proteínas/química , Proteínas/genética , Biología Computacional/métodos
2.
Genome Biol ; 24(1): 222, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798751

RESUMEN

DNA barcodes enable Oxford Nanopore sequencing to sequence multiple barcoded DNA samples on a single flow cell. DNA sequences with the same barcode need to be grouped together through demultiplexing. As the number of samples increases, accurate demultiplexing becomes difficult. We introduce HycDemux, which incorporates a GPU-parallelized hybrid clustering algorithm that uses nanopore signals and DNA sequences for accurate data clustering, alongside a voting-based module to finalize the demultiplexing results. Comprehensive experiments demonstrate that our approach outperforms unsupervised tools in short sequence fragment clustering and performs more robustly than current state-of-the-art demultiplexing tools for complex multi-sample sequencing data.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Análisis de Secuencia de ADN/métodos , Algoritmos , ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA