Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Plants ; 10(5): 798-814, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38714768

RESUMEN

Phytochrome A (phyA) is the plant far-red (FR) light photoreceptor and plays an essential role in regulating photomorphogenic development in FR-rich conditions, such as canopy shade. It has long been observed that phyA is a phosphoprotein in vivo; however, the protein kinases that could phosphorylate phyA remain largely unknown. Here we show that a small protein kinase family, consisting of four members named PHOTOREGULATORY PROTEIN KINASES (PPKs) (also known as MUT9-LIKE KINASES), directly phosphorylate phyA in vitro and in vivo. In addition, TANDEM ZINC-FINGER/PLUS3 (TZP), a recently characterized phyA-interacting protein required for in vivo phosphorylation of phyA, is also directly phosphorylated by PPKs. We reveal that TZP contains two intrinsically disordered regions in its amino-terminal domain that undergo liquid-liquid phase separation (LLPS) upon light exposure. The LLPS of TZP promotes colocalization and interaction between PPKs and phyA, thus facilitating PPK-mediated phosphorylation of phyA in FR light. Our study identifies PPKs as a class of protein kinases mediating the phosphorylation of phyA and demonstrates that the LLPS of TZP contributes significantly to more production of the phosphorylated phyA form in FR light.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo A , Fosforilación , Fitocromo A/metabolismo , Fitocromo A/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Separación de Fases
3.
Am J Drug Alcohol Abuse ; 50(2): 207-217, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38386811

RESUMEN

Background: Numerous studies have highlighted the pivotal role of alterations in the monetary reward system in the development and maintenance of substance use disorder (SUD). Although these alterations have been well documented in various forms of SUD, the electrophysiological mechanisms specific to opioid use disorder (OUD) remain underexplored. Understanding these mechanisms is critical for developing targeted interventions and advancing theories of addiction specific to opioid use.Objectives: To explore abnormalities in monetary reward outcome processing in males with OUD. We hypothesized that control individuals would show higher feedback-related negativity (FRN) to losses, unlike those in the OUD group, where FRN to losses and gains would not differ significantly.Methods: Fifty-seven participants (29 male individuals with OUD [heroin] and 28 male controls) were evaluated. A combination of the monetary incentive delay task (MIDT) and event-related potential (ERP) technology was used to investigate electrophysiological differences in monetary reward feedback processing between the OUD and healthy control groups.Results: We observed a significant interaction between group (control vs. OUD) and monetary outcome (loss vs. gain), indicated by p < .05 and η2p = 0.116. Specifically, control participants showed stronger negative FRN to losses than gains (p < .05), unlike the OUD group (p > .05).Conclusion: This study's FRN data indicate that males with OUD show altered processing of monetary rewards, marked by reduced sensitivity to loss. These findings offer electrophysiological insights into why males with OUD may pursue drugs despite potential economic downsides.


Asunto(s)
Potenciales Evocados , Trastornos Relacionados con Opioides , Recompensa , Humanos , Masculino , Adulto , Trastornos Relacionados con Opioides/fisiopatología , Potenciales Evocados/fisiología , Estudios de Casos y Controles , Electroencefalografía , Adulto Joven , Motivación , Retroalimentación Psicológica/fisiología
4.
Biosens Bioelectron ; 252: 116137, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401282

RESUMEN

Inspired by the programmability and modifiability of nucleic acids, point-of-care (POC) diagnostics for nucleic acid target detection is evolving to become more diversified and intelligent. In this study, we introduce a fluorescent and photothermal dual-mode logic biosensing platform that integrates catalytic hairpin assembly (CHA), toehold-mediated stand displacement reaction (SDR) and a DNA walking machine. Dual identification and signal reporting modules are incorporated into DNA circuits, orchestrated by an AND Boolean logic gate operator and magnetic beads (MBs). In the presence of bispecific microRNAs (miRNAs), the AND logic gate activates, driving the DNA walking machine, and facilitating the collection of hairpin DNA stands modified with FAM fluorescent group and CeO2@Au nanoparticles. The CeO2@Au nanoparticles, served as a nanozyme, can oxidize TMB into oxidation TMB (TMBox), enabling a near-infrared (NIR) laser-driven photothermal effect following the magnetic separation of MBs. This versatile platform was employed to differentiate between plasma samples from breast cancer patients, lung cancer patients, and healthy donors. The thermometer-readout transducers, derived from the CeO2@Au@DNA complexes, provided reliable results, further corroborated by fluorescence assays, enhancing the confidence in the diagnostics compared to singular detection method. The dual-mode logic biosensor can be easily customized to various nucleic acid biomarkers and other POC signal readout modalities by adjusting recognition sequences and modification strategies, heralding a promising future in the development of intelligent, flexible diagnostics for POC testing.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , Humanos , MicroARNs/genética , Oro , Técnicas Biosensibles/métodos , ADN/genética , Colorantes Fluorescentes
5.
J Am Chem Soc ; 146(5): 2901-2906, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38271666

RESUMEN

Macrocyclic arenes have emerged as pivotal scaffolds in supramolecular chemistry. Despite their significant contributions to molecular recognition and diverse applications, challenges persist in the development of macrocyclic arene-based crystalline materials, particularly in achieving porosity and addressing limitations in adsorption efficiency resulting from the small cavity sizes of existing macrocyclic arenes. In this study, we present the design and synthesis of a novel macrocyclic arene, clamparene (CLP), featuring a rigid backbone, easy synthesis, and a sizable cavity. CLP self-assembles into one-dimensional sub-nanotubes that further organize into a three-dimensional porous framework in the solid state. The crystalline solid of CLP exhibits potential as a porous crystalline adsorbent for various benzene-based contaminants with rapid adsorption kinetics, large uptake amounts, and good recyclability.

7.
Anal Chem ; 95(48): 17808-17817, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37972997

RESUMEN

The timely detection of diseases and the accurate identification of pathogens require the development of efficient and reliable diagnostic methods. In this study, we have developed a novel specific multivariate probe termed MRTFP (multivariate real-time fluorescent probe) by assembling strand exchange three-way-junction (3WJ) structures. The 3WJ structures were incorporated into a four-angle probe (FP) and a hexagonal probe (HP), to target the multivariate genes of Salmonella. The FP and HP enable single-step and multiplexed detection in RT-LAMP (real-time loop-mediated isothermal amplification) with exceptional sensitivity and specificity. Encouragingly, real food samples contaminated with Salmonella (Salmonella enteritidis and Salmonella typhimurium) can be readily identified and distinguished with a minimum detectable concentration (MDC) of 103 CFU/mL without the need for further culture. The introduction of MRTFP allows for simultaneous detection of dual or three targets in a single tube for LAMP, thereby improving detection efficiency. The MRTFP simplifies the design of robust multivariate probes, exhibits excellent stability, and avoids interference from multiple probe units, offering significant potential for the development of specific probes for efficient and accurate disease detection and pathogen identification.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Salmonella typhimurium , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad , Salmonella typhimurium/genética , Salmonella enteritidis/genética
8.
Proc Natl Acad Sci U S A ; 120(34): e2302901120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590408

RESUMEN

Abscisic acid (ABA), a classical plant hormone, plays an essential role in plant adaptation to environmental stresses. The ABA signaling mechanisms have been extensively investigated, and it was shown that the PYR1 (PYRABACTIN RESISTANCE1)/PYL (PYR1-LIKE)/RCAR (REGULATORY COMPONENT OF ABA RECEPTOR) ABA receptors, the PP2C coreceptors, and the SnRK2 protein kinases constitute the core ABA signaling module responsible for ABA perception and initiation of downstream responses. We recently showed that ABA signaling is modulated by light signals, but the underlying molecular mechanisms remain largely obscure. In this study, we established a system in yeast cells that was not only successful in reconstituting a complete ABA signaling pathway, from hormone perception to ABA-responsive gene expression, but also suitable for functionally characterizing the regulatory roles of additional factors of ABA signaling. Using this system, we analyzed the roles of several light signaling components, including the red and far-red light photoreceptors phytochrome A (phyA) and phyB, and the photomorphogenic central repressor COP1, in the regulation of ABA signaling. Our results showed that both phyA and phyB negatively regulated ABA signaling, whereas COP1 positively regulated ABA signaling in yeast cells. Further analyses showed that photoactivated phyA interacted with the ABA coreceptors ABI1 and ABI2 to decrease their interactions with the ABA receptor PYR1. Together, data from our reconstituted yeast ABA signaling system provide evidence that photoactivated photoreceptors attenuate ABA signaling by directly interacting with the key components of the core ABA signaling module, thus conferring enhanced ABA tolerance to light-grown plants.


Asunto(s)
Fitocromo A , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ácido Abscísico , Reguladores del Crecimiento de las Plantas , Fototransducción
9.
Sci Total Environ ; 882: 163544, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37076011

RESUMEN

How would the organic gas emission inventories of future urban vehicles change with new features of advanced technology cars? Here, volatile organic compounds (VOCs) and intermediate volatile organic compounds (IVOCs) from a fleet of Chinese light-duty gasoline vehicles (LDGVs) were characterized by chassis dynamometer experiments to grasp the key factors affecting future inventory accuracy. Subsequently, the VOC and IVOC emissions of LDGVs in Beijing, China, from 2020 to 2035, were calculated and the spatial-temporal variations were recognized under a scenario of fleet renewal. With the tightening of emission standards (ESs), cold start contributed a larger fraction of the total unified cycle VOC emissions due to the imbalanced emission reductions between operating conditions. It took 757.47 ± 337.75 km of hot running to equal one cold-start VOC emission for the latest certified vehicles. Therefore, the future tailpipe VOC emissions would be highly dependent on discrete cold start events rather than traffic flows. By contrast, the equivalent distance was shorter and more stable for IVOCs, with an average of 8.69 ± 4.59 km across the ESs, suggesting insufficient controls. Furthermore, there were log-linear relationships between temperatures and cold-start emissions, and the gasoline direct-injection vehicles performed better adaptability under low temperatures. In the updated emission inventories, the VOC emissions were more effectively reduced than the IVOC emissions. The start emissions of VOCs were estimated to be increasingly dominant, especially in wintertime. By winter 2035, the contribution of VOC start emissions could reach 98.98 % in Beijing, while the fraction of IVOC start emissions would decrease to 59.23 %. Spatially allocation showed that the high emission regions of tailpipe organic gases from LDGVs have transferred from road networks to regions of intense human activities. Our results provide new insights into tailpipe organic gas emissions of gasoline vehicles, and can support future emission inventories and refined assessment of air quality and human health risk.

10.
Anal Chem ; 95(15): 6433-6440, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37026469

RESUMEN

Although promising in monitoring low-abundance analytes, most of the DNAzyme walker is only responsive to a specific target. Herein, a universal, ready-to-use platform is developed by coupling nicking-enhanced rolling circle amplification and a self-powered DNAzyme walker (NERSD). It addressed the issues that DNAzyme strands need to be specifically designed for different biosensing system, allowing highly sensitive analysis of various targets with the same DNAzyme walker components. It is also specific owing to target-dependent ligation of the padlock probe and precise cleavage of a substrate by a DNAzyme strand. As typically demonstrated, the strategy has an equivalent capacity with the qRT-PCR kit in distinguishing plasma miR-21 levels of breast cancer patients from normal subjects and is able to differentiate intracellular miR-21 and ATP levels by confocal imaging. The approach characteristic of programmability, flexibility, and generality indicated the potential in all kinds of biosensing and imaging platform.


Asunto(s)
ADN Catalítico , Diagnóstico por Imagen , MicroARNs , Humanos , Diagnóstico por Imagen/métodos , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico , MicroARNs/análisis
11.
Plant Cell ; 35(8): 2972-2996, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119311

RESUMEN

Sun-loving plants trigger the shade avoidance syndrome (SAS) to compete against their neighbors for sunlight. Phytochromes are plant red (R) and far-red (FR) light photoreceptors that play a major role in perceiving the shading signals and triggering SAS. Shade induces a reduction in the level of active phytochrome B (phyB), thus increasing the abundance of PHYTOCHROME-INTERACTING FACTORS (PIFs), a group of growth-promoting transcription factors. However, whether other factors are involved in modulating PIF activity in the shade remains largely obscure. Here, we show that SALT OVERLY SENSITIVE2 (SOS2), a protein kinase essential for salt tolerance, positively regulates SAS in Arabidopsis thaliana. SOS2 directly phosphorylates PIF4 and PIF5 at a serine residue close to their conserved motif for binding to active phyB. This phosphorylation thus decreases their interaction with phyB and posttranslationally promotes PIF4 and PIF5 protein accumulation. Notably, the role of SOS2 in regulating PIF4 and PIF5 protein abundance and SAS is more prominent under salt stress. Moreover, phyA and phyB physically interact with SOS2 and promote SOS2 kinase activity in the light. Collectively, our study uncovers an unexpected role of salt-activated SOS2 in promoting SAS by modulating the phyB-PIF module, providing insight into the coordinated response of plants to salt stress and shade.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Luz , Fitocromo B/genética , Fitocromo B/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
12.
J Biol Chem ; 299(1): 102775, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493904

RESUMEN

Phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] is a critical signaling phospholipid involved in endolysosome homeostasis. It is synthesized by a protein complex composed of PIKfyve, Vac14, and Fig4. Defects in PtdIns(3,5)P2 synthesis underlie a number of human neurological disorders, including Charcot-Marie-Tooth disease, child onset progressive dystonia, and others. However, neuron-specific functions of PtdIns(3,5)P2 remain less understood. Here, we show that PtdIns(3,5)P2 pathway is required to maintain neurite thickness. Suppression of PIKfyve activities using either pharmacological inhibitors or RNA silencing resulted in decreased neurite thickness. We further find that the regulation of neurite thickness by PtdIns(3,5)P2 is mediated by NSG1/NEEP21, a neuron-specific endosomal protein. Knockdown of NSG1 expression also led to thinner neurites. mCherry-tagged NSG1 colocalized and interacted with proteins in the PtdIns(3,5)P2 machinery. Perturbation of PtdIns(3,5)P2 dynamics by overexpressing Fig4 or a PtdIns(3,5)P2-binding domain resulted in mislocalization of NSG1 to nonendosomal locations, and suppressing PtdIns(3,5)P2 synthesis resulted in an accumulation of NSG1 in EEA1-positive early endosomes. Importantly, overexpression of NSG1 rescued neurite thinning in PtdIns(3,5)P2-deficient CAD neurons and primary cortical neurons. Our study uncovered the role of PtdIns(3,5)P2 in the morphogenesis of neurons, which revealed a novel aspect of the pathogenesis of PtdIns(3,5)P2-related neuropathies. We also identified NSG1 as an important downstream protein of PtdIns(3,5)P2, which may provide a novel therapeutic target in neurological diseases.


Asunto(s)
Neuritas , Fosfatos de Fosfatidilinositol , Humanos , Endosomas/metabolismo , Neuritas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Fosfatos de Fosfatidilinositol/metabolismo
13.
Environ Sci Technol ; 56(23): 16695-16706, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399649

RESUMEN

Semivolatile/intermediate-volatility organic compounds (S/IVOCs) from mobile sources are essential SOA contributors. However, few studies have comprehensively evaluated the SOA contributions of S/IVOCs by simultaneously comparing different parameterization schemes. This study used three SOA schemes in the CMAQ model with a measurement-based emission inventory to quantify the mobile source S/IVOC-induced SOA (MS-SI-SOA) for 2018 in China. Among different SOA schemes, SOA predicted by the 2D-VBS scheme was in the best agreement with observations, but there were still large deviations in a few regions. Three SOA schemes showed the peak value of annual average MS-SI-SOA was up to 0.6 ± 0.3 µg/m3. High concentrations of MS-SI-SOA were detected in autumn, while the notable relative contribution of MS-SI-SOA to total SOA was predicted in the coastal areas in summer, with a regional average contribution up to 20 ± 10% in Shanghai. MS-SI-SOA concentrations varied by up to 2 times among three SOA schemes, mainly due to the discrepancy in SOA precursor emissions and chemical reactions, suggesting that the differences between SOA schemes should also be considered in modeling studies. These findings identify the hotspot areas and periods for MS-SI-SOA, highlighting the importance of S/IVOC emission control in the future upgrading of emission standards.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Emisiones de Vehículos/análisis , Aerosoles/análisis , China , Estaciones del Año , Contaminantes Atmosféricos/análisis
14.
Sci Total Environ ; 851(Pt 2): 158312, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36041606

RESUMEN

Intermediate volatility organic compounds (IVOCs) from mobile sources contribute significantly to secondary organic aerosol (SOA) formation. However, the assessments of IVOC emissions remain considerably uncertain due to the lack of localized measured data and detailed emission source classifications. This study established a comprehensive database of IVOC emission factors (EFs) for mobile sources based on the diversified measured EFs and correlations with hydrocarbons. The provincial-level IVOC emission inventories over China were further established by integrating activity data of various mobile sources. The national mobile source IVOC emissions were 507.5 Gg in 2017. The IVOC emissions of on-road and non-road mobile sources were roughly the same. Trucks and non-road construction machineries were the major contributors to IVOC emissions, accounting for >66 % of the total. The IVOC emission characteristics and spatial distributions from various mobile sources varied significantly with different types and usages. The IVOC emission inventories with detailed classifications can be used to evaluate emission control policies for mobile sources. Incorporating localized measured data would be beneficial for a better understanding for the atmospheric impacts of mobile source IVOC emissions.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Emisiones de Vehículos/análisis , Aerosoles/análisis , Compuestos Orgánicos Volátiles/análisis , Vehículos a Motor , Hidrocarburos , China , Contaminantes Atmosféricos/análisis
15.
Front Oncol ; 12: 890346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875066

RESUMEN

Acute myeloid leukemia (AML) is an aggressive hematological malignancy that recurs in approximately 50% of cases. Elevated homing and uncontrolled expansion are characteristics of AML cells. Here, we identified that Fifth Ewing Variant (FEV) regulates the homing and expansion of AML cells. We found that FEV was re-expressed in 30% of primary AML samples and in almost all relapsed AML samples, and FEV expression levels were significantly higher in relapsed samples compared to primary samples. Interference of FEV expression in AML cell lines delayed leukemic progression and suppressed homing and proliferation. Moreover, FEV directly activated integrin subunit alpha 4 (ITGA4) transcription in a dose-dependent manner. Inhibition of integrin α4 activity with natalizumab (NZM) reduced the migration and colony-forming abilities of blasts and leukemic-initiating cells (LICs) in both primary and relapsed AML. Thus, our study suggested that FEV maintains the homing and expansion of AML cells by activating ITGA4 transcription and that targeting ITGA4 inhibits the colony-forming and migration capacities of blasts and LICs. Thus, these findings suggested that the FEV-ITGA4 axis may be a therapeutic target for both primary and relapsed AML.

17.
J Mater Chem B ; 10(21): 3959-3973, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35575030

RESUMEN

Changes in the level of nucleic acids in blood may be correlated with some clinical disorders like cancer, stroke, trauma and autoimmune diseases, and thus, nucleic acids can serve as potential biomarkers for pathological processes. The requirement of technical equipment and operator expertise in effective information readout of modern molecular diagnostic technologies significantly restricted application outside clinical laboratories. The ability to detect nucleic acid biomarkers with off-the-shelf devices, which have the advantages of portability, simplicity, low cost and short response time, is critical to provide a prompt clinical result in circumstances where the laboratory instruments are not available. This review throws light on the current strategies and challenges for nucleic acid diagnosis with commercial portable devices, indicating the future prospect of portable diagnostic devices and making a great difference in improving the healthcare and disease surveillance in resource-limited areas.


Asunto(s)
Ácidos Nucleicos , Biomarcadores , Técnicas de Amplificación de Ácido Nucleico/métodos
18.
Plant Cell ; 34(6): 2286-2308, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35263433

RESUMEN

CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), a well-characterized E3 ubiquitin ligase, is a central repressor of seedling photomorphogenic development in darkness. However, whether COP1 is involved in modulating abscisic acid (ABA) signaling in darkness remains largely obscure. Here, we report that COP1 is a positive regulator of ABA signaling during Arabidopsis seedling growth in the dark. COP1 mediates ABA-induced accumulation of ABI5, a transcription factor playing a key role in ABA signaling, through transcriptional and post-translational regulatory mechanisms. We further show that COP1 physically interacts with ABA-hypersensitive DCAF1 (ABD1), a substrate receptor of the CUL4-DDB1 E3 ligase targeting ABI5 for degradation. Accordingly, COP1 directly ubiquitinates ABD1 in vitro, and negatively regulates ABD1 protein abundance in vivo in the dark but not in the light. Therefore, COP1 promotes ABI5 protein stability post-translationally in darkness by destabilizing ABD1 in response to ABA. Interestingly, we reveal that ABA induces the nuclear accumulation of COP1 in darkness, thus enhancing its activity in propagating the ABA signal. Together, our study uncovers that COP1 modulates ABA signaling during seedling growth in darkness by mediating ABA-induced ABI5 accumulation, demonstrating that plants adjust their ABA signaling mechanisms according to their light environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas , Plantones/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
19.
Angew Chem Int Ed Engl ; 61(12): e202115907, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35064613

RESUMEN

Desirable biosensing assays need to be sensitive, specific, cost-effective, instrument-free, and versatile. Herein we report a new strategy termed CLIPON (CRISPR and Large DNA assembly Induced Pregnancy strips for signal-ON detection) that can deliver these traits. CLIPON integrates a commercial pregnancy test strip (PTS) with four biological elements: the human chorionic gonadotropin (hCG), CRISPR-Cas12a, crRNA and cauliflower-like large-sized DNA assemblies (CLD). CLIPON uses the Cas12a/crRNA complex both to recognize a target of interest and to release CLD-bound hCG so that target presence can translate into a colorimetric signal on the PTS. We demonstrate the versatility of CLIPON through sensitive and specific detection of HPV genomic DNA, SARS-CoV-2 genomic RNA and adenosine. We also engineer a cell phone app and a hand-held microchip to achieve signal quantification. CLIPON represents an attractive option for biosensing and point-of-care diagnostics.


Asunto(s)
Sistemas CRISPR-Cas , Pruebas en el Punto de Atención , Pruebas de Embarazo , ADN/análisis , Femenino , Humanos , Dispositivos Laboratorio en un Chip , Embarazo , ARN Viral/análisis , Reproducibilidad de los Resultados , SARS-CoV-2/genética , Sensibilidad y Especificidad , Virus/aislamiento & purificación
20.
J Integr Plant Biol ; 64(2): 393-411, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34984823

RESUMEN

As two of the most important environmental factors, light and temperature regulate almost all aspects of plant growth and development. Under natural conditions, light is accompanied by warm temperatures and darkness by cooler temperatures, suggesting that light and temperature are tightly associated signals for plants. Indeed, accumulating evidence shows that plants have evolved a wide range of mechanisms to simultaneously perceive and respond to dynamic changes in light and temperature. Notably, the photoreceptor phytochrome B (phyB) was recently shown to function as a thermosensor, thus reinforcing the notion that light and temperature signaling pathways are tightly associated in plants. In this review, we summarize and discuss the current understanding of the molecular mechanisms integrating light and temperature signaling pathways in plants, with the emphasis on recent progress in temperature sensing, light control of plant freezing tolerance, and thermomorphogenesis. We also discuss the questions that are crucial for a further understanding of the interactions between light and temperature signaling pathways in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fitocromo B/metabolismo , Plantas/metabolismo , Transducción de Señal , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...