Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(3): e14314, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36938475

RESUMEN

Two-dimensional transition-metal dichalcogenide (TMDC) exhibits a series of distinctive optical and electrical characteristics, which make it has a good application prospect in the field of optical manipulation. Based on the Mie theory, we investigate the radiation force exerted on the TMDC wrapped dielectric particle by Gaussian wave. Theoretical calculations show that the optical force spectra exhibit two resonant peaks in the visible region, which are generated by the interband exciton transitions in TMDC. Magnitude and morphology of the excitonic peaks could be modulated effectively by tuning the number of coated TMDC layers. Furthermore, the excitonic peaks transform significantly with particle size due to the variation of coupling strength between the dielectric particle and TMDC coating. The investigation provides potential applications in optical manipulations and light-matter interactions.

2.
Sci Adv ; 9(4): eade4203, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36706175

RESUMEN

Spinning thermal radiation is a unique phenomenon observed in condensed astronomical objects, including the Wolf-Rayet star EZ-CMa and the red degenerate star G99-47, due to the existence of strong magnetic fields. Here, by designing symmetry-broken metasurfaces, we demonstrate that spinning thermal radiation with a nonvanishing optical helicity can be realized even without applying a magnetic field. We design nonvanishing optical helicity by engineering a dispersionless band that emits omnidirectional spinning thermal radiation, where our design reaches 39% of the fundamental limit. Our results firmly suggest that metasurfaces can impart spin coherence in the incoherent radiation excited by thermal fluctuations. The symmetry-based design strategy also provides a general pathway for controlling thermal radiation in its temporal and spin coherence.

3.
Appl Opt ; 61(16): 4773-4778, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255959

RESUMEN

We propose an approach to generate tunable terahertz (THz) radiation from an electron bunch passing over the unique graphene metasurface. We not only control the frequency of the THz radiation but also tune the amplitude and direction of the radiation by varying the chemical potential of the graphene. Several new phenomena are observed. The radiation has the same frequency with the resonant frequency of the graphene metasurface at normal incidence. The radiation frequency meets the linear relationship with the chemical potential. The radiation magnitude is the inverse to the reflection magnitude, and the sum of them is close to being a constant. The strong Smith-Purcell radiation on the graphene metasurface is due to the interaction between the electron bunch and periodic surface plasmon polaritons (SPPs). The stronger the SPP, the higher is the radiation magnitude that is obtained. These results would provide a promising way for developing tunable radiation in the THz band.

4.
Opt Express ; 30(8): 12630-12638, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35472896

RESUMEN

Germanium is typically used for solid-state electronics, fiber-optics, and infrared applications, due to its semiconducting behavior at optical and infrared wavelengths. In contrast, here we show that the germanium displays metallic nature and supports propagating surface plasmons in the deep ultraviolet (DUV) wavelengths, that is typically not possible to achieve with conventional plasmonic metals such as gold, silver, and aluminum. We measure the photonic band spectrum and distinguish the plasmonic excitation modes: bulk plasmons, surface plasmons, and Cherenkov radiation using a momentum-resolved electron energy loss spectroscopy. The observed spectrum is validated through the macroscopic electrodynamic electron energy loss theory and first-principles density functional theory calculations. In the DUV regime, intraband transitions of valence electrons dominate over the interband transitions, resulting in the observed highly dispersive surface plasmons. We further employ these surface plasmons in germanium to design a DUV radiation source based on the Smith-Purcell effect. Our work opens a new frontier of DUV plasmonics to enable the development of DUV devices such as metasurfaces, detectors, and light sources based on plasmonic germanium thin films.

5.
Opt Express ; 29(14): 21044-21055, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34265901

RESUMEN

The reported dual-band asymmetric transmission is usually an effect of mutual polarization conversion, where one polarized wave is converted to its cross-polarization in the first band while the other polarized wave is converted to its cross-polarization in the second band. In this work, we experimentally demonstrate a dual-band asymmetric transmission effect only for one-polarized linear wave in the terahertz band. It is measured that the cross-polarization transmission coefficient Tyx reaches two peaks of 0.715 and 0.548 at the frequency of 0.74 THz and 1.22 THz, respectively. While the transmission coefficient Txy is lower than 0.2 in the wide-band from 0.5 THz to 1.5 THz. Firstly, the multiple interference model is used to discuss the physical mechanism of the dual-band asymmetric transmission. However, the second band of the calculated spectrum is offset due to the strong near field coupling between the two metal layers. The coupled-mode theory is then introduced and the fitting result of the coupled-mode theory is in good agreement with that of the experiment in the two bands. This research would provide new theoretical instructions in designing and analyzing multiband asymmetric transmission in the terahertz, microwave or the optical bands.

6.
RSC Adv ; 10(11): 6179-6184, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35496008

RESUMEN

In this work, a broadband terahertz asymmetric transmission metamaterial is experimentally demonstrated for a linearly polarized wave. The measured transmission coefficient T yx is larger than 0.6 from 0.55 to 0.82 THz, and reaches a peak value of 0.714 at 0.62 THz, while the transmission coefficient T xy is lower than 0.2 from 0.4 to 0.9 THz. The calculated asymmetric transmission parameter of the measurement ranges from 0.53 to 0.84 THz for magnitudes over 0.4. The peak value reached 0.65 at the frequency of 0.78 THz. The physical mechanism of the polarization conversion was also analyzed from the distributions of the surface currents and electric fields.

7.
Materials (Basel) ; 12(6)2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30871140

RESUMEN

Broad stopband filters are proposed, based on multilayer electromagnetically induced transparency (EIT) metamaterial structures. The single EIT metamaterial consists of a U-shaped resonator and a strip on a polyimide substrate. The EIT-like spectral feature is firstly utilized to achieve stopband filters by properly coupling two layers of EIT structure. Influences of different rotation angles on the transmission properties of the two-layer EIT structure are investigated. It is found the wider low-transmission band can be obtained for the Transverse Magnetic (TM) polarization when the two EIT metal structures are vertical to each other. Furthermore, the bandwidth of the stopband can be controlled by increasing layers of the EIT structures with the proper architectural design. The design using a coupling effect of multi EIT-like resonances in the metamaterial would provide a new method for broad stopband filters in highly integrated optical circuits.

8.
Opt Lett ; 39(7): 1709-12, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24686585

RESUMEN

A dual-resonance frequency selective surface filter in the THz range that uses bilayer modified complementary metamaterial structures is proposed in this Letter. The bandpass filter, with dual bands centered at 0.315 and 0.48 THz, uses a single crystal quartz substrate and is simulated, fabricated, and measured. To minimize the manufacturing risks of working with fragile and thin quartz substrates, efforts have been made to improve the transmission frequency response features at realizable substrate thicknesses. Experimental results from 0.1 to 0.6 THz measured by THz time-domain spectroscopy show excellent agreement with the simulation results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...