Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Langmuir ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177968

RESUMEN

The progress of industrialization has led to a notable elevation in selenium (Se) levels within aquatic environments, surpassing established thresholds and posing significant risks to both human health and ecological equilibrium. Chitosan (CS) exhibits considerable potential in mitigating waterborne pollutants owing to its nontoxic nature, cost-effectiveness, and the presence of abundant hydroxyl and amino functional groups along its backbone. However, its subpar mechanical and thermal stability, susceptibility to acidic dissolution, and challenges in recycling impede its widespread use in water pollution mitigation. To address the aforementioned issues, this study employs a liquid nitrogen-directed freezing process to synthesize chitosan aerogel, aiming to enhance the adsorption efficiency of Se(IV). Morphological and adsorption tests demonstrate that the compact and closely interconnected porous structure facilitates diffusion of Se(IV) into the aerogel, thereby enhancing its adsorption efficiency. The theoretical adsorption capacity of the CS aerogel for Se(IV) is 56.45 mg/g, surpassing that of numerous natural and composite adsorbents, with adsorption equilibrium achieved within 2.5 h. Moreover, the CS aerogel demonstrates substantial potential in remediating Se(IV)-contaminated wastewater and improving circulation stability. A series of characterization results demonstrate that the primary adsorption mechanism of the CS aerogel onto Se(IV) involves electrostatic interactions, complemented by hydrogen bonding between the amino and hydroxyl groups of the CS aerogel and Se(IV), thereby augmenting the adsorption efficacy. This study introduces innovative avenues for tailoring the functionality of 3D macroscopic materials to address the remediation of heavy metals in aquatic environments.

2.
Nat Commun ; 15(1): 6905, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134523

RESUMEN

Chloroplasts are key players in photosynthesis and immunity against microbial pathogens. However, the precise and timely regulatory mechanisms governing the control of photosynthesis-associated nuclear genes (PhANGs) expression in plant immunity remain largely unknown. Here we report that TaPIR1, a Pst-induced RING-finger E3 ubiquitin ligase, negatively regulates Pst resistance by specifically interacting with TaHRP1, an atypical transcription factor histidine-rich protein. TaPIR1 ubiquitinates the lysine residues K131 and K136 in TaHRP1 to regulate its stability. TaHRP1 directly binds to the TaHRP1-binding site elements within the PhANGs promoter to activate their transcription via the histidine-rich domain of TaHRP1. PhANGs expression induces the production of chloroplast-derived ROS. Although knocking out TaHRP1 reduces Pst resistance, TaHRP1 overexpression contributes to photosynthesis, and chloroplast-derived ROS production, and improves disease resistance. TaPIR1 expression inhibits the downstream activation of TaHRP1 and TaHRP1-induced ROS accumulation in chloroplasts. Overall, we show that the TaPIR1-mediated ubiquitination and degradation of TaHRP1 alters PhANGs expression to disrupt chloroplast function, thereby increasing plant susceptibility to Pst.


Asunto(s)
Cloroplastos , Regulación de la Expresión Génica de las Plantas , Triticum , Ubiquitina-Proteína Ligasas , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Cloroplastos/metabolismo , Resistencia a la Enfermedad/genética , Nicotiana/metabolismo , Nicotiana/genética , Fotosíntesis , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Triticum/citología , Triticum/metabolismo
3.
ACS Nano ; 18(34): 23196-23204, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39141918

RESUMEN

Excitonic devices operate based on excitons, which can be excited by photons as well as emitting photons and serve as a medium for photon-carrier conversion. Excitonic devices are expected to combine the advantages of both the high response rate of photonic devices and the high integration of electronic devices simultaneously. However, because of the neutral feature, exciton transport is generally achieved via diffusion rather than using electric fields, and the efficient control of exciton flux directionality has always been difficult. In this work, a precisely designed one-dimensional periodic nanostructure (1DPS) is used to introduce periodic strain field along with resonant mode to the WS2 monolayer, achieving exciton oriented diffusion with a 7.6-fold exciton diffusion coefficient enhancement relative to that of intrinsic, while enhancing the excitonic emission intensity by a factor of 10 and reducing exciton saturation threshold power by 2 orders of magnitude. Based on the analysis of the density functional theory (DFT) and the finite-element method (FEM), we attribute the anisotropy of exciton diffusion to exciton funneling induced by periodic potentials, which do not require excessive potential height difference for an efficient oriented diffusion. As a result of resonant emission, the exciton diffusion is dragged into the nonlinear regime owing to the high exciton density close to saturation, which improves the exciton diffusion coefficient and diffusion anisotropy more appreciably.

4.
J Gene Med ; 26(9): e3737, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39198937

RESUMEN

BACKGROUND: Lung cancer is a prevalent and severe form of malignant tumors worldwide. tRF-Leu-CAG, a recently discovered non-coding single-stranded small RNA derived from transfer RNA, has sparked interest in exploring its biological functions and potential molecular mechanisms in lung cancer. METHODS: The abundance of tRF-Leu-CAG was measured via quantitative real-time polymerase chain reaction (qRT-PCR) in 96 sets of lung cancer tissue samples obtained from clinical patients. Subsequently, both in vivo and in vitro experiments were conducted to validate the biological functions of tRF-Leu-CAG in lung cancer. Furthermore, an exploration of the potential target genes of tRF-Leu-CAG and its association with autophagy and drug resistance in lung cancer was undertaken. RESULTS: Our analysis revealed a significant upregulation of tRF-Leu-CAG in non-small cell lung cancer (NSCLC) tissues. Additionally, we observed that heightened expression of tRF-Leu-CAG significantly augmented the proliferation and migration of NSCLC cells, facilitated cell cycle progression, and suppressed apoptosis. Furthermore, we identified transcription elongation factor A3 (TCEA3) as a direct target gene of tRF-Leu-CAG. TCEA3 inhibited the proliferation and migration of NSCLC, and tRF-Leu-CAG promoted the proliferation and migration of NSCLC by mediating the silencing of TCEA3. Moreover, we demonstrated that the augmentation of paclitaxel resistance by tRF-Leu-CAG was contingent on autophagy. Finally, tRF-Leu-CAG notably accelerated tumor growth and promoted the process of epithelial-mesenchymal transition (EMT) in vivo. CONCLUSIONS: tRF-Leu-CAG promotes NSCLC tumor growth and metastasis by targeting TCEA3 and promotes paclitaxel resistance by enhancing cellular autophagy. These results provide potentially effective targets and therapeutic options for the clinical treatment of NSCLC.


Asunto(s)
Apoptosis , Autofagia , Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Humanos , Autofagia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Apoptosis/genética , Movimiento Celular/genética , Carcinogénesis/genética , Resistencia a Antineoplásicos/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
BMC Genomics ; 25(1): 626, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902625

RESUMEN

BACKGROUND: Wheat grain endosperm is mainly composed of proteins and starch. The contents and the overall composition of seed storage proteins (SSP) markedly affect the processing quality of wheat flour. Polyploidization results in duplicated chromosomes, and the genomes are often unstable and may result in a large number of gene losses and gene rearrangements. However, the instability of the genome itself, as well as the large number of duplicated genes generated during polyploidy, is an important driving force for genetic innovation. In this study, we compared the differences in starch and SSP, and analyzed the transcriptome and metabolome among Aegilops sharonensis (R7), durum wheat (Z636) and amphidiploid (Z636×R7) to reveal the effects of polyploidization on the synthesis of seed reserve polymers. RESULTS: The total starch and amylose content of Z636×R7 was significantly higher than R7 and lower than Z636. The gliadin and glutenin contents of Z636×R7 were higher than those in Z636 and R7. Through transcriptome analysis, there were 21,037, 2197, 15,090 differentially expressed genes (DEGs) in the three comparison groups of R7 vs Z636, Z636 vs Z636×R7, and Z636×R7 vs R7, respectively, which were mainly enriched in carbon metabolism and amino acid biosynthesis pathways. Transcriptome data and qRT-PCR were combined to analyze the expression levels of genes related to storage polymers. It was found that the expression levels of some starch synthase genes, namely AGP-L, AGP-S and GBSSI in Z636×R7 were higher than in R7 and among the 17 DEGs related to storage proteins, the expression levels of 14 genes in R7 were lower than those in Z636 and Z636×R7. According to the classification analysis of all differential metabolites, most belonged to carboxylic acids and derivatives, and fatty acyls were enriched in the biosynthesis of unsaturated fatty acids, niacin and nicotinamide metabolism, one-carbon pool by folate, etc. CONCLUSION: After allopolyploidization, the expression of genes related to starch synthesis was down-regulated in Z636×R7, and the process of starch synthesis was inhibited, resulting in delayed starch accumulation and prolongation of the seed development process. Therefore, at the same development time point, the starch accumulation of Z636×R7 lagged behind that of Z636. In this study, the expression of the GSe2 gene in Z636×R7 was higher than that of the two parents, which was beneficial to protein synthesis, and increased the protein content. These results eventually led to changes in the synthesis of seed reserve polymers. The current study provided a basis for a greater in-depth understanding of the mechanism of wheat allopolyploid formation and its stable preservation, and also promoted the effective exploitation of high-value alleles.


Asunto(s)
Aegilops , Semillas , Triticum , Triticum/genética , Triticum/metabolismo , Aegilops/genética , Aegilops/metabolismo , Semillas/genética , Semillas/metabolismo , Hibridación Genética , Poliploidía , Almidón/biosíntesis , Almidón/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteómica/métodos , Multiómica
6.
BMC Plant Biol ; 24(1): 558, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877396

RESUMEN

BACKGROUND: Wheat is one of the important grain crops in the world. The formation of lesion spots related to cell death is involved in disease resistance, whereas the regulatory pathway of lesion spot production and resistance mechanism to pathogens in wheat is largely unknown. RESULTS: In this study, a pair of NILs (NIL-Lm5W and NIL-Lm5M) was constructed from the BC1F4 population by the wheat lesion mimic mutant MC21 and its wild genotype Chuannong 16. The formation of lesion spots in NIL-Lm5M significantly increased its resistance to stripe rust, and NIL-Lm5M showed superiour agronomic traits than NIL-Lm5W under stripe rust infection.Whereafter, the NILs were subjected to transcriptomic (stage N: no spots; stage S, only a few spots; and stage M, numerous spots), metabolomic (stage N and S), and hormone analysis (stage S), with samples taken from normal plants in the field. Transcriptomic analysis showed that the differentially expressed genes were enriched in plant-pathogen interaction, and defense-related genes were significantly upregulated following the formation of lesion spots. Metabolomic analysis showed that the differentially accumulated metabolites were enriched in energy metabolism, including amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Correlation network diagrams of transcriptomic and metabolomic showed that they were both enriched in energy metabolism. Additionally, the contents of gibberellin A7, cis-Zeatin, and abscisic acid were decreased in leaves upon lesion spot formation, whereas the lesion spots in NIL-Lm5M leaves were restrained by spaying GA and cytokinin (CTK, trans-zeatin) in the field. CONCLUSION: The formation of lesion spots can result in cell death and enhance strip rust resistance by protein degradation pathway and defense-related genes overexpression in wheat. Besides, the formation of lesion spots was significantly affected by GA and CTK. Altogether, these results may contribute to the understanding of lesion spot formation in wheat and laid a foundation for regulating the resistance mechanism to stripe rust.


Asunto(s)
Muerte Celular , Resistencia a la Enfermedad , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/microbiología , Triticum/metabolismo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/metabolismo , Citocininas/metabolismo , Perfilación de la Expresión Génica , Metabolómica , Regulación de la Expresión Génica de las Plantas
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124613, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38865887

RESUMEN

As a crucial endogenous reactive oxygen species, hypochlorous acid (HClO) plays an indispensable role in numerous physiological and pathological processes. Additionally, it serves as a biomarker closely associated with inflammation and liver injury. The utilization of near-infrared fluorescence probes has surged in recent years for live biological imaging, owing to their minimal tissue damage and potent tissue penetration capabilities. In this work, a novel near-infrared fluorescence probe MB-HPD was synthesized to sensitively detect HClO. Probe MB-HPD exhibits remarkable selectivity, high sensitivity (14.3 nM), and rapid response towards HClO (20 s). Probe MB-HPD has demonstrated successful application in the imaging of HClO within cells and zebrafish. Remarkably, it has proven to be effective for detecting HClO within environmental samples, as well as imaging HClO in mice models of arthritis and APAP-induced liver injury. These findings indicate the broad applicability of probe MB-HPD, offering a promising avenue for designing highly selective near-infrared fluorescence probes suitable for real-time HClO monitoring.


Asunto(s)
Monitoreo del Ambiente , Colorantes Fluorescentes , Ácido Hipocloroso , Pez Cebra , Ácido Hipocloroso/análisis , Colorantes Fluorescentes/química , Animales , Ratones , Humanos , Monitoreo del Ambiente/métodos , Colorimetría/métodos , Espectroscopía Infrarroja Corta/métodos , Imagen Óptica/métodos
8.
Virology ; 595: 110083, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696887

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) infection inhibits swine leukocyte antigen class I (SLA-I) expression in pigs, resulting in inefficient antigen presentation and subsequent low levels of cellular PRRSV-specific immunity as well as persistent viremia. We previously observed that the non-structural protein 4 (nsp4) of PRRSV contributed to inhibition of the ß2-microglobulin (ß2M) and SLA-I expression in cells. Here, we constructed a series of nsp4 mutants with different combination of amino acid mutations to attenuate the inhibitory effect of nsp4 on ß2M and SLA-I expression. Almost all nsp4 mutants exogenously expressed in cells showed an attenuated effect on inhibition of ß2M and SLA-I expression, but the recombinant PRRSV harboring these nsp4 mutants failed to be rescued with exception of the rPRRSV-nsp4-mut10 harboring three amino acid mutations. However, infection of rPRRSV-nsp4-mut10 not only enhanced ß2M and SLA-I expression in both cells and pigs but also promoted the DCs to active the CD3+CD8+T lymphocytes more efficiently, as compared with its parental PRRSV (rPRRVS-nsp4-wt). These data suggested that the inhibition of nsp4-mediated ß2M downregulation improved ß2M/SLA-I expression in pigs.


Asunto(s)
Regulación hacia Abajo , Antígenos de Histocompatibilidad Clase I , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Proteínas no Estructurales Virales , Microglobulina beta-2 , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Animales , Porcinos , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/inmunología , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Línea Celular , Linfocitos T CD8-positivos/inmunología , Mutación
9.
Cells ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534313

RESUMEN

Huntington's disease (HD), a congenital neurodegenerative disorder, extends its pathological damages beyond the nervous system. The systematic manifestation of HD has been extensively described in numerous studies, including dysfunction in peripheral organs and peripheral inflammation. Gut dysbiosis and the gut-liver-brain axis have garnered greater emphasis in neurodegenerative research, and increased plasma levels of pro-inflammatory cytokines have been identified in HD patients and various in vivo models, correlating with disease progression. In the present study, we investigated hepatic pathological markers in the liver of R6/2 mice which convey exon 1 of the human mutant huntingtin gene. Furthermore, we evaluated the impact of intravenously administered Mesenchymal Stromal Cells (MSCs) on the liver enzymes, changes in hepatic inflammatory markers, as well as brain pathology and behavioral deficits in R6/2 mice. Our results revealed altered enzyme expression and increased levels of inflammatory mediators in the liver of R6/2 mice, which were significantly attenuated in the MSC-treated R6/2 mice. Remarkably, neuronal pathology and altered motor activities in the MSC-treated R6/2 mice were significantly ameliorated, despite the absence of MSCs in the postmortem brain. Our data highlight the importance of hepatic pathological changes in HD, providing a potential therapeutic approach. Moreover, the data open new perspectives for the search in blood biomarkers correlating with liver pathology in HD.


Asunto(s)
Enfermedad de Huntington , Ratones , Humanos , Animales , Enfermedad de Huntington/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Encéfalo/metabolismo , Hígado/metabolismo
10.
Opt Lett ; 49(3): 550-553, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300056

RESUMEN

Femtosecond laser filament-induced plasma spectroscopy (FIPS) demonstrates great potential in remote sensing for identifying atmospheric pollutant molecules. Due to the widespread aerosols in the atmosphere, remote detection based on FIPS would be affected by both the excitation and the propagation of fingerprint fluorescence, which still remain elusive. Here the physical model of filament-induced aerosol fluorescence is established to reveal the combined effect of Mie scattering and amplification spontaneous emission, which is subsequently proven by experimental results, the dependence of the backward fluorescence on the interaction length between filaments and aerosols. These findings provide an insight into the complicated aerosol effect in the overall physical process of FIPS including propagation, excitation, and emission, paving the way to its practical application in atmospheric remote sensing.

11.
Nat Commun ; 15(1): 471, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212318

RESUMEN

Membrane technology using well-defined pore structure can achieve high ion purity and recovery. However, fine-tuning the inner pore structure of the separation nanofilm to be uniform and enhance the effective pore area is still challenging. Here, we report dendrimers with different peripheral groups that preferentially self-assemble in aqueous-phase amine solution to facilitate the formation of polyamide nanofilms with a well-defined effective pore range and uniform pore structure. The high permeabilities are maintained by forming asymmetric hollow nanostripe nanofilms, and their well-designed ion effective separation pore ranges show an enhancement, rationalized by molecular simulation. The self-assembled dendrimer polyamide membrane provides Cl-/SO42- selectivity more than 17 times that of its pristine polyamide counterparts, increasing from 167.9 to 2883.0. Furthermore, the designed membranes achieve higher Li purity and Li recovery compared to current state-of-the-art membranes. Such an approach provides a scalable strategy to fine-tune subnanometre structures in ion separation nanofilms.

12.
Theor Appl Genet ; 137(1): 31, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267732

RESUMEN

KEY MESSAGE: A co-located novel QTL for TFS, FPs, FMs, FFS, FFPs, KWS, and KWPs with potential of improving wheat yield was identified and validated. Spike-related traits, including fertile florets per spike (FFS), kernel weight per spike (KWS), total florets per spike (TFS), florets per spikelet (FPs), florets in the middle spikelet (FMs), fertile florets per spikelet (FFPs), and kernel weight per spikelet (KWPs), are key traits in improving wheat yield. In the present study, quantitative trait loci (QTL) for these traits evaluated under various environments were detected in a recombinant inbred line population (msf/Chuannong 16) mainly genotyped using the 16 K SNP array. Ultimately, we identified 60 QTL, but only QFFS.sau-MC-1A for FFS was a major and stably expressed QTL. It was located on chromosome arm 1AS, where loci for TFS, FPs, FMs, FFS, FFPs, KWS, and KWPs were also simultaneously co-mapped. The effect of QFFS.sau-MC-1A was further validated in three independent segregating populations using a Kompetitive Allele-Specific PCR marker. For the co-located QTL, QFFS.sau-MC-1A, the presence of a positive allele from msf was associate with increases for all traits: + 12.29% TFS, + 10.15% FPs, + 13.97% FMs, + 17.12% FFS, + 14.75% FFPs, + 22.17% KWS, and + 19.42% KWPs. Furthermore, pleiotropy analysis showed that the positive allele at QFFS.sau-MC-1A simultaneously increased the spike length, spikelet number per spike, and thousand-kernel weight. QFFS.sau-MC-1A represents a novel QTL for marker-assisted selection with the potential for improving wheat yield. Four genes, TraesCS1A03G0012700, TraesCS1A03G0015700, TraesCS1A03G0016000, and TraesCS1A03G0016300, which may affect spike development, were predicted in the physical interval harboring QFFS.sau-MC-1A. Our results will help in further fine mapping QFFS.sau-MC-1A and be useful for improving wheat yield.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Fitomejoramiento , Fenotipo , Genotipo
13.
Small ; 20(1): e2305200, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649150

RESUMEN

Artificially molding exciton flux is the cornerstone for developing promising excitonic devices. In the emerging hetero/homobilayers, the spatial separated charges prolong exciton lifetimes and create out-plane dipoles, facilitating electrically control exciton flux on a large scale, and the nanoscale periodic moiré potentials arising from twist-angle or/and lattice mismatch can substantially alter exciton dynamics, which are mainly proved in the heterostructures. However, the spatially indirect excitons dynamics in homobilayers without lattice mismatch remain elusive. Here the nonequilibrium dynamics of indirect exciton in homobilayers are systematically investigated. The homobilayers with slightly twist-angle can induce a deep moiré potential (>50 meV) in the energy landscape of indirect excitons, resulting in a strongly localized moiré excitons insulating the transport dynamics from phonons and disorder. These findings provide insights into the exciton dynamics and many-body physics in moiré superlattices modulated energy landscape, with implications for designing excitonic devices operating at room temperature.

14.
Anal Methods ; 15(41): 5466-5473, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37815333

RESUMEN

Lilii Bulbus is a notable flower in Chinese cuisine, and has also been used as a Chinese herbal medicine for over 2000 years. This work presents an analytical method for rapidly screening multiple pesticide residues in Lilii Bulbus using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). For sample pre-treatment, the QuEChERS method is employed, and targeted MS/MS is adopted for data acquisition. Moreover, a database containing 515 pesticides with accurate mass database and a high-resolution fragment ion spectrum library is established in this work. In addition, the qualitative and quantitative results of the screening method are validated. The results show that within the linear concentration range of 2 to 200 µg L-1, for each pesticide, 89.3% of the pesticides exhibit linear correlation coefficients R2 equal to or exceeding 0.990. The limit of quantification for all pesticides is below 50 µg kg-1. With a recovery of 70% to 120% and RSD ≤ 20% as the satisfactory standards, 387 (75.0%), 411 (79.7%) and 420 (81.4%) pesticides meet the standards at the three addition levels of 10 µg kg-1, 20 µg kg-1, and 100 µg kg-1, respectively. By utilizing the proposed method, pesticide residues in 100 samples are investigated, providing scientific data to ensure the safety of pesticide residues and demonstrating the general applicability of the method for routine monitoring of pesticide residues in Lilii Bulbus.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Plaguicidas/análisis , Cromatografía Líquida de Alta Presión/métodos , Residuos de Plaguicidas/análisis , Espectrometría de Masas en Tándem/métodos , Ensayos Analíticos de Alto Rendimiento
15.
Mol Plant Pathol ; 24(12): 1495-1509, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37746915

RESUMEN

Chitin is a long-chain polymer of ß-1,4-linked N-acetylglucosamine that forms rigid microfibrils to maintain the hyphal form and protect it from host attacks. Chitin oligomers are first recognized by the plant receptors in the apoplast region, priming the plant's immune system. Here, seven polysaccharide deacetylases (PDAs) were identified and their activities on chitin substrates were investigated via systematic characterization of the PDA family from Fusarium graminearum. Among these PDAs, FgPDA5 was identified as an important virulence factor and was specifically expressed during pathogenesis. ΔFgpda5 compromised the pathogen's ability to infect wheat. The polysaccharide deacetylase structure of FgPDA5 is essential for the pathogenicity of F. graminearum. FgPDA5 formed a homodimer and accumulated in the plant apoplast. In addition, FgPDA5 showed a high affinity toward chitin substrates. FgPDA5-mediated deacetylation of chitin oligomers prevented activation of plant defence responses. Overall, our results identify FgPDA5 as a polysaccharide deacetylase that can prevent chitin-triggered host immunity in plant apoplast through deacetylation of chitin oligomers.


Asunto(s)
Quitina , Fusarium , Virulencia , Plantas , Inmunidad de la Planta , Enfermedades de las Plantas
16.
Theor Appl Genet ; 136(10): 213, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37740730

RESUMEN

KEY MESSAGE: A novel and stably expressed QTL QSNS.sicau-SSY-7A for spikelet number per spike in wheat without negative effects on thousand-kernel weight was identified and validated in different genetic backgrounds. Spikelet number per spike (SNS) is an important determinant of yield in wheat. In the present study, we combined bulked segregant analysis (BSA) and the wheat 660 K single-nucleotide polymorphism (SNP) array to rapidly identify genomic regions associated with SNS from a recombinant inbred line (RIL) population derived from a cross between the wheat lines S849-8 and SY95-71. A genetic map was constructed using Kompetitive Allele Specific PCR markers in the SNP-enriched region on the long arm of chromosome 7A. A major and stably expressed QTL, QSNS.sicau-SSY-7A, was detected in multiple environments. It was located in a 1.6 cM interval on chromosome arm 7AL flanked by the markers AX-109983514 and AX-109820548. This QTL explained 6.86-15.72% of the phenotypic variance, with LOD values ranging from 3.66 to 8.66. Several genes associated with plant growth and development were identified in the interval where QSNS.sicau-SSY-7A was located on the 'Chinese Spring' wheat and wild emmer reference genomes. Furthermore, the effects of QSNS.sicau-SSY-7A and WHEAT ORTHOLOG OFAPO1(WAPO1) on SNS were analyzed. Interestingly, QSNS.sicau-SSY-7A significantly increased SNS without negative effects on thousand-kernel weight, anthesis date and plant height, demonstrating its great potential for breeding aimed at improving grain yield. Taken together, these results indicate that QSNS.sicau-SSY-7A is a promising locus for yield improvement, and its linkage markers are helpful for fine mapping and molecular breeding.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Alelos , Barajamiento de ADN , Grano Comestible
17.
Theor Appl Genet ; 136(9): 181, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550493

RESUMEN

KEY MESSAGE: A likely new locus QSns.sau-MC-3D.1 associated with SNS showing no negative effect on yield-related traits compared to WAPO1 was identified and validated in various genetic populations under multiple environments. The number of spikelets per spike (SNS) is one of the crucial factors determining wheat yield. Thus, improving our understanding of the genes that regulate SNS could help develop wheat varieties with higher yield. In this study, a recombinant inbred line (RIL) population (MC) containing 198 lines derived from a cross between msf and Chuannong 16 (CN16) was used to construct a genetic linkage map using the GenoBaits Wheat 16 K Panel. The genetic map contained 5,991 polymorphic SNP markers spanning 2,813.25 cM. A total of twelve QTL for SNS were detected, and two of them, i.e., QSns.sau-MC-3D.1 and QSns.sau-MC-7A, were stably expressed. QSns.sau-MC-3D.1 had high LOD values ranging from 4.99 to 11.06 and explained 9.71-16.75% of the phenotypic variation. Comparison of QSns.sau-MC-3D.1 with previously reported SNS QTL suggested that it is likely a novel one, and two kompetitive allele-specific PCR (KASP) markers were further developed. The positive effect of QSns.sau-MC-3D.1 was also validated in three biparental populations and a diverse panel containing 388 Chinese wheat accessions. Genetic analysis indicated that WHEAT ORTHOLOG OFAPO1 (WAPO1) was a candidate gene for QSns.sau-MC-7A. Pyramiding of QSns.sau-MC-3D.1 and WAP01 had a great additive effect increasing SNS by 7.10%. Correlation analysis suggested that QSns.sau-MC-3D.1 was likely independent of effective tiller number, plant height, spike length, anthesis date, and thousand kernel weight. However, the H2 haplotype of WAPO1 may affect effective tiller number and plant height. These results indicated that utilization of QSns.sau-MC-3D.1 should be given priority for wheat breeding. Geographical distribution analysis showed that the positive allele of QSns.nsau-MC-3D.1 was dominant in most wheat-producing regions of China, and it has been positively selected among modern cultivars released in China since the 1940s. Gene prediction, qRT-PCR analysis, and sequence alignment suggested that TraesCS3D03G0216800 may be the candidate gene of QSns.nsau-MC-3D.1. Taken together, these results enrich our understanding of the genetic basis of wheat SNS and will be useful for fine mapping and cloning of the gene underlying QSns.sau-MC-3D.1.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Mapeo Cromosómico/métodos , Triticum/genética , Fitomejoramiento , Fenotipo
18.
Adv Mater ; 35(40): e2304716, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37392073

RESUMEN

Indirect electrocatalytic conversion of cheap organic raw materials via the activation of S─H and N─H bonds into the value-added S─N/S─S bonds chemicals for industrial rubber production is a promising strategy to realize the atomic economic reaction, during which the kinetic inhibition that is associated with the electron transfer at the electrode/electrolyte interface in traditional direct electrocatalysis can be eliminated to achieve higher performance. In this work, a series of di-copper-substituted phosphotungstatebased foams (PW10 Cu2 @CMC) are fabricated with tunable loadings (17 to 44 wt%), which can be successfully applied in indirect electrocatalytic syntheses of sulfenamides and disulfides. Specifically, the optimal PW10 Cu2 @CMC (44 wt%) exhibits excellent electrocatalytic performance for the construction of S─N/S─S bonds (yields up to 99%) coupling with the efficient production of H2 (≈50 µmol g-1  h-1 ). Remarkably, it enables the scale-up production (≈14.4 g in a batch experiment) and the obtained products can serve as rubber vulcanization accelerators with superior properties to traditional industrial rubber additives in real industrial processes. This powerful catalysis system that can simultaneously produce rubber vulcanization accelerator and H2 may inaugurate a new electrocatalytic avenue to explore polyoxometalate-based foam catalysts in electrocatalysis field.

19.
Nanoscale ; 15(31): 12907-12914, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37435813

RESUMEN

Deep-subwavelength features have a minimal impact on wave transport in all dielectric systems; thus the homogenization approach was commonly adopted. Recently, the breakdown of effective medium theory (EMT) for the incident wave near the total reflection (TR) angle was demonstrated in a deep-subwavelength dielectric multilayer. Additionally, anomalous transmission was reported at angles exceeding the TR angle when introducing disorder and was attributed to Anderson localization. Here we firstly demonstrated that the alleged anomalous transmission also occurs in the disorder-free case, illustrating that attributing anomalous transmission to Anderson localization deserves a more in-depth study. To clarify the underlying physics of this asserted anomalous transmission, Anderson localization and broken EMT, the incident angle dependent reflectivity and modes for ordered and disordered deep-subwavelength multilayers were investigated systematically. Actually, the EMT is still convincing and the anomalous transmission is reasonable after a simple correction. However, the anomalous transmission is more accessible and the permittivity correction is more imperative in the disordered system due to the Anderson localization. These findings can be expanded to other wave systems such as acoustic waves and matter waves, providing insight into EMT and deepening our understanding of the intriguing transport phenomena in deep subwavelength systems.

20.
Materials (Basel) ; 16(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37374559

RESUMEN

Pure self-compacting concrete has many disadvantages, such as early shrinkage and cracking. The addition of fibers can effectively improve the properties of resistance to tension and cracking of self-compacting concrete, thereby the effect of improving its strength and toughness can be achieved. Basalt fiber is a "new green industrial material" that has unique advantages, such as high crack resistance and being lightweight compared with other fiber materials. In order to study the mechanical properties and crack resistance of basalt fiber self-compacting high-strength concrete intensively, the self-compacting high-strength concrete of C50 was designed and obtained using the absolute volume method with multiple proportions. Orthogonal experimental methods were used to study the influence of the water binder ratio, fiber volume fraction, fiber length, and fly ash content on the mechanical properties of the basalt fiber self-compacting high-strength concrete. Meanwhile, the efficiency coefficient method was used to determine the best experiment plan (water binder ratio 0.3, fiber volume ratio 0.2%, fiber length 12 mm, fly ash content 30%), and the effect of fiber volume fraction and fiber length on the crack resistance of the self-compacting high-performance concrete was investigated using improved plate confinement experiments. The results show that (1) the water binder ratio had the greatest impact on the compressive strength of basalt fiber self-compacting high-strength concrete, and as the fiber volume fraction increased, the splitting tensile strength and flexural strength both increased; (2) there was an optimal value for the effect of the fiber length on the mechanical properties; (3) with the increase in fiber volume fraction, the total crack area of the fiber self-compacting high-strength concrete significantly decreased. When the fiber length increased, the maximum crack width first decreased and then slowly increased. The best crack resistance effect was achieved when the fiber volume fraction was 0.3% and the fiber length was 12 mm. Therefore, basalt fiber self-compacting high-strength concrete can be widely used in engineering fields, such as national defense construction, transportation, and building structure reinforcement and repair, due to its excellent mechanical and crack resistance properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA