Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Oncol ; 41(6): 141, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714554

RESUMEN

IGFBP-3 is aberrantly expressed in many tumor types, and its serum and tumor tissue levels provide auxiliary information for assessing the degree of tumor malignancy and patient prognosis, making it a potential therapeutic target for human malignancies and conferring it remarkable clinical value for determining patient prognosis. In this review, we provide a comprehensive overview of the aberrant expression, diverse biological effects, and clinical implications of IGFBP-3 in tumors and its role as a potential prognostic marker and therapeutic target for tumors. In addition, we summarize the signaling pathways through which IGFBP-3 exerts its effects. IGFBP-3 comprises an N-terminal, an intermediate region, and a C-terminal structural domain, each exerting different biological effects in several tumor cell types in an IGF-dependent/non-independent manner. IGFBP-3 shares an intricate relationship with the tumor microenvironment, thereby affecting tumor growth. Overall, IGFBP-3 is an essential regulatory factor that mediates tumor occurrence and progression. Gaining deeper insights into the fundamental characteristics of IGFBP-3 and its role in various tumor types will provide new perspectives and allow for the development of novel strategies for cancer diagnosis, treatment, and prognostic evaluation.


Asunto(s)
Biomarcadores de Tumor , Progresión de la Enfermedad , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Neoplasias , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Neoplasias/metabolismo , Neoplasias/diagnóstico , Neoplasias/patología , Neoplasias/terapia , Biomarcadores de Tumor/metabolismo , Pronóstico , Transducción de Señal , Microambiente Tumoral , Animales
2.
Front Cardiovasc Med ; 11: 1384679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807946

RESUMEN

Background: Platelet hyperreactivity is a risk factor for thrombosis in elderly patients with cardiovascular diseases. However, the mechanism of platelet hyperactivation has not been elucidated. This study aims to investigate alterations in the proteomes of platelets and their correlation with platelet hyperreactivity among elderly individuals. Methods: This study included 10 young (28.1 ± 1.9 years), 10 middle-aged (60.4 ± 2.2 years), and 10 old (74.2 ± 3.0 years) subjects. Washed platelets were used in the present study. Platelet samples were analysed by using data-independent acquisition (DIA) quantitative mass spectrometry (MS). Results: The results showed that the platelet proteomic profile exhibited high similarity between the young and middle-aged groups. However, there were significant differences in protein expression profiles between the old group and the young group. By exploring the dynamic changes in the platelet proteome with ageing, clusters of proteins that changed significantly with ageing were selected for further investigation. These clusters were related to the initial triggering of complement, phagosome and haemostasis based on enrichment analysis. We found that platelet degranulation was the major characteristic of the differentially expressed proteins between the old and young populations. Moreover, complement activation, the calcium signalling pathway and the nuclear factor-κB (NF-κB) signalling pathway were enriched in differentially expressed proteins. Conclusions: The present study showed that there are obvious differences in the protein profiles of the elderly compared with young and middle-aged populations. The results provide novel evidence showing changes in platelet hyperactivity and susceptibility to thrombosis in the elderly population.

3.
Cancer Cell Int ; 24(1): 60, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326861

RESUMEN

BACKGROUND: Glioblastoma (GBM) characterized by immune escape is the most malignant primary brain tumors, which has strong immunosuppressive effect. Programmed death ligand-1 (PD-L1) is a recognized immunosuppressive member on the surface of tumor cells, and plays a crucial role in immune evasion of tumors. Actually, little is known about the regulation of PD-L1 expression in GBM. Insulin-like growth factor binding protein 3 (IGFBP3) is upregulated in GBM and is related to poor patient prognosis. However, it remains unclear whether IGFBP3 plays a role in the regulation of PD-L1 expression in GBM. METHODS: The role of IGFBP3 in the glioma immune microenvironment was investigated using the CIBERSORT algorithm. The correlation between IGFBP3 and PD-L1 expression was analyzed using TCGA and CGGA databases. QRT-PCR, immunoblotting and RNA-seq were used to examine the regulatory effect of IGFBP3 on PD-L1 expression. Co-culture assay, cell counting kit (CCK-8), qRT-PCR, ELISA and flow cytometry were performed to explore the function of IGFBP3 in inducing immunosuppression. The biological role of IGFBP3 was verified using immunohistochemical, immunofluorescence and mice orthotopic tumor model. RESULTS: In this study, we analyzed immune cells infiltration in gliomas and found that IGFBP3 may be associated with an immunosuppressive microenvironment. Then, by analyzing TCGA and CGGA databases, our results showed that IGFBP3 and PD-L1 expression were positively correlated in GBM patients, but not in LGG patients. In vitro experiments conducted on different GBM cell lines revealed that the overexpression of IGFBP3 led to an increase in PD-L1 expression, which was reversible upon knockdown IGFBP3. Mechanistically, IGFBP3 activated the JAK2/STAT3 signaling pathway, leading to an increase in PD-L1 expression. Additionally, co-culture experiments results showed IGFBP3 overexpression induced upregulation of PD-L1 expression promoted apoptosis in Jurkat cells, and this effect was blocked by IGFBP3 antibody and PDL-1 inhibitors. Importantly, in vivo experiments targeting IGFBP3 suppressed tumor growth and significantly prolonged the survival of mice. CONCLUSIONS: This research demonstrated IGFBP3 is a novel regulator for PD-L1 expression in GBM, and identified a new mechanism by which IGFBP3 regulates immune evasion through PD-L1, suggesting that IGFBP3 may be a potential novel target for GBM therapy.

4.
PeerJ ; 11: e16029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692113

RESUMEN

Background: Chronic unpredictable mild stress (CUMS) has been shown to exacerbate atherosclerosis, but the underlying mechanism remains unknown. Adipose tissue is an energy storage organ and the largest endocrine organ in the human body, playing a key role in the development of cardiovascular disease. In this research, it was hypothesized that CUMS may exacerbate the development of atherosclerosis by inducing the hypertrophy and dysfunction of white adipocytes. Methods: The CUMS-induced atherosclerosis model was developed in Western diet-fed apolipoprotein E (ApoE)-/- mice. White adipose tissue (WAT), serum, aortic root, and the brachiocephalic trunk were collected and tested after 12 weeks of CUMS development. The mouse model of CUMS was evaluated for depression-like behavior using the open field test (OFT) and the elevated plus maze (EPM) test. Enzyme-linked immunosorbent assay (ELISA) was conducted to detect serum noradrenaline and urine adrenaline protein levels. Serological assays were used to detect serum low-density lipoprotein (LDL), high-density lipoprotein (HDL), total cholesterol (TC), and free fatty acid (FFA) concentrations. Hematoxylin and eosin (H&E) staining and oil red O were used to detect atherosclerotic plaque area, lipid deposition, and adipocyte size. The mRNA levels of genes related to aberrant adipose tissue function were determined using real-time PCR. Immunofluorescence assay and western blotting were conducted to examine the expression of proteins in the adipose tissue samples. Results: CUMS aggravated vascular atherosclerotic lesions in ApoE-/- mice. It decreased body weight while increasing the percentage of WAT. The serological results indicated that the concentration of HDL decreased in CUMS mice. Notably, adipocyte hypertrophy increased, whereas the mRNA levels of Pparg and its target genes (Slc2a4 (encodes for GLUT4), Adipoq, and Plin1) decreased. Further investigation revealed that CUMS increased subcutaneous inguinal WAT (iWAT) lipid synthesis and adipocyte inflammation while decreasing lipid hydrolysis and the expression of HDL-associated protein ApoA-I. Moreover, CUMS aggravated insulin resistance in mice and inhibited the insulin pathway in iWAT. Conclusions: These findings indicated that CUMS induces adipose tissue dysfunction via a mechanism that leads to dyslipidemia, increased inflammation, and insulin resistance in the body, thereby exacerbating atherosclerosis. Notably, CUMS that is involved in decreasing the expression of HDL-associated proteins in adipose tissue may be a crucial link between adipose hypertrophy and advanced atherosclerosis. This study reveals a novel mechanism via which CUMS exacerbates atherosclerosis from the novel perspective of abnormal adipose function and identifies a novel potential therapeutic target for this disease.


Asunto(s)
Aterosclerosis , Resistencia a la Insulina , Animales , Ratones , Adipocitos Blancos , Tejido Adiposo , Aterosclerosis/etiología , Obesidad , Ratones Noqueados para ApoE , Estrés Psicológico
5.
Elife ; 122023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37668356

RESUMEN

Identification oncogenes is fundamental to revealing the molecular basis of cancer. Here, we found that FOXP2 is overexpressed in human prostate cancer cells and prostate tumors, but its expression is absent in normal prostate epithelial cells and low in benign prostatic hyperplasia. FOXP2 is a FOX transcription factor family member and tightly associated with vocal development. To date, little is known regarding the link of FOXP2 to prostate cancer. We observed that high FOXP2 expression and frequent amplification are significantly associated with high Gleason score. Ectopic expression of FOXP2 induces malignant transformation of mouse NIH3T3 fibroblasts and human prostate epithelial cell RWPE-1. Conversely, FOXP2 knockdown suppresses the proliferation of prostate cancer cells. Transgenic overexpression of FOXP2 in the mouse prostate causes prostatic intraepithelial neoplasia. Overexpression of FOXP2 aberrantly activates oncogenic MET signaling and inhibition of MET signaling effectively reverts the FOXP2-induced oncogenic phenotype. CUT&Tag assay identified FOXP2-binding sites located in MET and its associated gene HGF. Additionally, the novel recurrent FOXP2-CPED1 fusion identified in prostate tumors results in high expression of truncated FOXP2, which exhibit a similar capacity for malignant transformation. Together, our data indicate that FOXP2 is involved in tumorigenicity of prostate.


Asunto(s)
Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Animales Modificados Genéticamente , Factores de Transcripción Forkhead/genética , Células 3T3 NIH , Oncogenes , Próstata , Neoplasias de la Próstata/genética
6.
BMC Complement Med Ther ; 22(1): 75, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35300669

RESUMEN

BACKGROUND: Platelets play an important role in the progression of atherosclerosis and cardiovascular events. The inhibition of platelet function is a main strategy to reduce risk of cardiovascular events. Some studies have shown that tomato extracts inhibit platelet function, but the molecular mechanisms remain unclear. Fruitflow is a water-solute tomato extract and the main ingredients including flavonoids, adenosine, chlorogenic acid, phytosterols, naringenin, and carotenoids. The present study investigated the effects of fruitflow on adenosine diphosphate (ADP)- and collagen- stimulated platelet aggregation, platelet adhesion, and levels of thromboxane B2 (TXB2), 6-keto-prostaglandin F1α (PGF1α), and platelet factor 4 (PF4) and explored the underlying molecular mechanisms. METHODS: Platelet-rich plasma (PRP) was used for measurement of platelet aggregation, TXB2, 6-keto- PGF1α, and PF4 levels. Platelet aggregation was analyzed using a Chrono-Log aggregometer. TXB2, 6-keto- PGF1α, and PF4 levels were determined using enzyme-linked immunosorbent assay kits. Immunoblotting was used to detect protein expression and phosphorylation on washed platelets. Platelet adhesion and spreading were determined by immunofluorescence. RESULTS: Fruitflow (1, 3, 10 and 100 µg/ml) dose-dependently inhibited platelet aggregation that was induced by ADP and collagen. Fruitflow (100 µg/ml) treatment completely suppressed ADP- and collagen-stimulated platelet aggregation. Fruitflow (100 µg/ml) significantly decreased TXB2 and 6-keto-PGF1α generation and PF4 release in ADP- and collagen-stimulated platelets. Treatment with fruitflow effectively blocked collagen-induced platelet spreading. To determine the potential molecule mechanism of action of fruitflow, we investigated the protein expression and phosphorylation of several signaling molecules in collagen-activated platelets. Fruitflow dose-dependently suppressed Akt, Glycogen synthase kinase-3ß (GSK-3ß), spleen tyrosine kinase (Syk) and phospholipase Cγ2 (PLCγ2) and p38 MAPK phosphorylation that was induced by collagen. CONCLUSION: Fruitflow inhibited platelet aggregation and reduced TXB2, 6-keto-PGF1α, and PF4 levels in ADP- and collagen-stimulated platelets. The mechanism of action of fruitflow may be associated with the suppression of Akt/GSK3ß, Syk/PLCγ2, and p38 MAPK phosphorylation in collagen-activated platelets. Fruitflow is a natural product derived from tomato and can be used as a health food for decreasing platelet activity.


Asunto(s)
Plaquetas , Proteínas Proto-Oncogénicas c-akt , Plaquetas/metabolismo , Colágeno/metabolismo , Colágeno/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/farmacología , Fosfolipasa C gamma/metabolismo , Fosfolipasa C gamma/farmacología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Front Pharmacol ; 12: 746107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646142

RESUMEN

Platelet hyperactivity is a risk factor for cardiovascular disease and thrombosis. Recent studies reported that the tomato extract Fruitflow inhibited platelet function, but the molecular mechanism is still unclear. The present study used proteomics to quantitatively analyze the effect of fruitflow on the inhibition of collagen-stimulated platelets and validated the involvement of several signaling molecules. Fruitflow significantly inhibited human platelet aggregation and P-selectin expression that were induced by collagen. Proteomics analysis revealed that compared fruitflow-treated collagen-stimulated platelets with only collagen-stimulated platelets, 60 proteins were upregulated and 10 proteins were downregulated. Additionally, 66 phosphorylated peptides were upregulated, whereas 37 phosphorylated peptides were downregulated. Gene Ontology analysis indicated that fruitflow treatment downregulated phosphoinositide 3-kinase (PI3K)/protein kinase B and guanosine triphosphatase-mediated signal transduction in collagen-activated platelets. Biological validation indicated that fruitflow decreased Akt, glycogen synthase kinase 3ß, p38 mitogen-activated protein kinase (MAPK), and heat shock protein (Hsp27) phosphorylation in collagen-stimulated platelets. Fruitflow recovered cyclic adenosine monophosphate levels in collagen-activated platelets and reduced protein kinase A substrate phosphorylation that was induced by collagen. These findings suggest that fruitflow is a functional food that can inhibit platelet function, conferring beneficial effects for people who are at risk for platelet hyperactivity-associated thrombosis.

8.
Pharmgenomics Pers Med ; 14: 397-408, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833551

RESUMEN

PURPOSE: Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy. Thirty to forty percent of DLBCL patients still experience relapse or develop refractory disease even with standard immunochemotherapy, leading to a poor prognosis. Currently, although several gene-based classification methods can be used to predict the prognosis of DLBCL, some patients are still unable to be classified. This study was performed to identify a novel prognostic biomarker for DLBCL. PATIENTS AND METHODS: A total of 1850 B-cell non-Hodgkin lymphoma (B-NHL) patients in 8 independent datasets with microarray gene expression profiles were retrieved from the Gene Expression Omnibus (GEO) database and Lymphoma/Leukemia Molecular Profiling Project (LLMPP). The candidate genes were selected through three filters in a strict pipeline. Survival analysis was performed in two independent datasets of patients with both gene expression data and clinical information. Gene set enrichment analysis (GSEA) and the CIBERSORT algorithm were used to explore the biological functions of the genes. RESULTS: We identified 6 candidate genes associated with the clinical outcome of DLBCL patients: CHN1, CD3D, CLU, ICOS, KLRB1 and LAT. Unlike the other five genes, CHN1 has not been previously reported to be implicated in lymphoma. We also observed that CHN1 had prognostic significance in important clinical subgroups; in particular, high CHN1 expression was significantly related to good outcomes in DLBCL patients with the germinal center B-cell-like (GCB) subtype, stage III-IV, or an International Prognostic Index (IPI) score > 2. Multivariate Cox regression analysis of the two datasets showed that CHN1 was an independent prognostic factor for DLBCL. Additionally, GSEA and CIBERSORT indicated that CHN1 was correlated with cell adhesion and T cell immune infiltration. CONCLUSION: Our data indicate for the first time that high CHN1 expression is associated with favorable outcomes in DLBCL patients, suggesting its potential utility as a prognostic marker in DLBCL.

9.
BMC Genomics ; 22(1): 196, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33740891

RESUMEN

BACKGROUND: MicroRNAs play an important role in many fundamental biological and pathological processes. Defining the microRNAs profile underlying the processes by beneficial and detrimental lifestyles, including caloric restriction (CR), exercise and high-fat diet (HF), is necessary for understanding both normal physiology and the pathogenesis of metabolic disease. We used the microarray to detect microRNAs expression in livers from CR, EX and HF mice models. After predicted potential target genes of differentially expressed microRNAs with four algorithms, we applied GO and KEGG to analyze the function of predicted microRNA targets. RESULTS: We describe the overall microRNAs expression pattern, and identified 84 differentially expressed microRNAs changed by one or two or even all the three lifestyle modifications. The common and different enriched categories of gene function and main biochemical and signal transduction pathways were presented. CONCLUSIONS: We provided for the first time a comprehensive and thorough comparison of microRNAs expression profiles in liver among these lifestyle modifications. With this knowledge, our findings provide us with an overall vision of microRNAs in the molecular impact of lifestyle on health as well as useful clues for future and thorough research of the role of microRNAs.


Asunto(s)
Hígado , MicroARNs , Animales , Dieta Alta en Grasa/efectos adversos , Perfilación de la Expresión Génica , Estilo de Vida , Ratones , MicroARNs/genética , Transducción de Señal
10.
Oxid Med Cell Longev ; 2021: 8819231, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33728029

RESUMEN

This study investigated the effect of resveratrol on Toll-like receptor 4- (TLR4-) mediated matrix metalloproteinase 3 (MMP3) and MMP9 expression in oxidized low-density lipoprotein- (ox-LDL-) activated platelets and the potential molecule mechanism. Human platelets were used in the present study. The results showed that resveratrol suppressed TLR4, MMP3, and MMP9 expression in ox-LDL-activated platelets. The TLR4 inhibitor CLI-095 also inhibited MMP3 and MMP9 expression and secretion in ox-LDL- and lipopolysaccharide- (LPS-) activated platelets. The combination of resveratrol and CLI-095 synergistically suppressed MMP3 and MMP9 expression in ox-LDL- and LPS-activated platelets. These findings suggest that the resveratrol-induced inhibition of MMP3 and MMP9 expression is linked to the suppression of TLR4 activation. Resveratrol also suppressed spleen tyrosine kinase (Syk) phosphorylation and nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) expression and IL-1ß secretion in ox-LDL- and LPS-treated platelets. The coimmunoprecipitation results showed that resveratrol inhibited the binding of Syk and NLRP3. Finally, resveratrol reduced vascular senescence cells and the expression of TLR4, MMP3, and MMP9 and prevented alterations of vascular structure in 52-week-old mice. Our findings demonstrated that resveratrol decreased inflammatory protein expression and improved vascular structure in aged mice. Resveratrol inhibited the expression of TLR4 and secretion of MMP3, MMP9, and IL-1ß. The mechanism of action of resveratrol appears to be associated with the inhibition of TLR4/Syk/NLRP3 activation in ox-LDL-activated platelets.


Asunto(s)
Plaquetas/metabolismo , Lipoproteínas LDL/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Activación Plaquetaria/efectos de los fármacos , Resveratrol/farmacología , Transducción de Señal , Quinasa Syk/metabolismo , Receptor Toll-Like 4/metabolismo , Envejecimiento/patología , Animales , Plaquetas/efectos de los fármacos , Caspasa 1/metabolismo , Senescencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Sinergismo Farmacológico , Humanos , Interleucina-1beta/metabolismo , Masculino , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Proteína p53 Supresora de Tumor/metabolismo
11.
Front Immunol ; 12: 786666, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069560

RESUMEN

Objective: To date, there are no studies regarding the lactylation profile and its role in critically ill patients. Thus, we aimed to examine expression of histone H3 lysine 18 (H3K18) lactylation and its role in patients with septic shock. Methods: Thirteen healthy volunteers and 35 critically ill patients from the Department of Surgical Intensive Care Medicine, Beijing Hospital were enrolled in our study. Baseline information and clinical outcomes were obtained prospectively. Lactylation levels of all proteins and H3K18 from peripheral blood mononuclear (PBMC) were determined by western blotting and serum levels of inflammatory cytokines by flow cytometry. Arginase-1 (Arg1) and Krüppel-like factor-4 (Klf4) mRNA expression was evaluated by quantitative real-time PCR (qRT-PCR). Results: Lactylation was found to be an all-protein post-translational modification and was detected in PBMCs from both healthy volunteers and critically ill patients, with a significantly higher relative density in shock patients (t=2.172, P=0.045). H3K18la was expressed in all subjects, including healthy volunteers, with the highest level in septic shock patients (compared with non-septic shock patients, critically ill without shock patients and healthy volunteers P=0.033, 0.000 and 0.000, respectively). Furthermore, H3K18la protein expression correlated positively with APACHE II scores, SOFA scores on day 1, ICU stay, mechanical ventilation time and serum lactate (ρ=0.42, 0.63, 0.39, 0.51 and 0.48, respectively, ρ=0.012, 0.000, 0.019, 0.003 and 0.003, respectively). When we matched patients with septic shock and with non-septic shock according to severity, we found higher H3K18la levels in the former group (t=-2.208, P =0.040). Moreover, H3K18la exhibited a close correlation with procalcitonin levels (ρ=0.71, P=0.010). Patients with high H3K18la expression showed higher IL-2, IL-5, IL-6, IL-8, IL-10, IL-17, IFN-α levels (ρ=0.33, 0.37, 0.62, 0.55, 0.65, 0.49 and 0.374 respectively, P=0.024, 0.011, 0.000, 0.000, 0.000 and 0.000 respectively). H3K18la expression also displayed a positive correlation with the level of Arg1 mRNA (ρ=0.561, P=0.005). Conclusions: Lactylation is an all-protein post-translational modification occurring in both healthy subjects and critically ill patients. H3K18la may reflect the severity of critical illness and the presence of infection. H3K18la might mediate inflammatory cytokine expression and Arg1 overexpression and stimulate the anti-inflammatory function of macrophages in sepsis.


Asunto(s)
Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Choque Séptico/diagnóstico , Choque Séptico/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Gravedad del Paciente
14.
Oxid Med Cell Longev ; 2019: 9013169, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31583048

RESUMEN

AIM: Resveratrol is a natural plant polyphenol. The present study investigated the effects of resveratrol on the Toll-like receptor 4- (TLR4-) mediated expression and secretion of matrix metalloproteinases (MMPs) in oxidized low-density lipoprotein- (ox-LDL-) treated human umbilical vein endothelial cells (HUVECs). METHODS: Protein expression was analyzed by immunoblotting. The secretion of MMPs was measured by an enzyme-linked immunosorbent assay. The animal experiments were performed with and without resveratrol treatment in high-fat chow-fed mice. RESULTS: Resveratrol inhibited the expression of TLR4, MMP3, and MMP9 in ox-LDL- and lipopolysaccharide- (LPS-) treated HUVECs. Resveratrol reduced the secretion of MMP3 and MMP9 that was induced by ox-LDL and LPS. The TLR4 inhibitor CLI-095 similarly suppressed the expression and secretion of MMP3 and MMP9 in ox-LDL- and LPS-treated HUVECs. Resveratrol attenuated the phosphorylation of the transcription factors nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) that was induced by ox-LDL and LPS. Resveratrol recovered Sirt1 expression. In the animal experiments, resveratrol decreased TLR4 expression in the aorta, MMP9 levels in plasma, and vascular structural changes in high-fat chow-fed mice, with no significant effect on plasma MMP3 levels. CONCLUSION: Resveratrol inhibited the TLR4-mediated expression and secretion of MMP3 and MMP9 in ox-LDL-treated HUVECs. The mechanism of action of resveratrol may be associated with the suppression of NF-κB and STAT3 phosphorylation and restoration of Sirt1 expression. Resveratrol exerts protective effects against vascular structural changes in high-fat chow-fed mice.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Resveratrol/uso terapéutico , Factor de Transcripción STAT3/metabolismo , Receptor Toll-Like 4/metabolismo , Humanos , Resveratrol/farmacología
15.
Aging (Albany NY) ; 11(17): 6960-6982, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31487691

RESUMEN

Cardiac-cerebral vascular disease (CCVD), is primarily induced by atherosclerosis, and is a leading cause of mortality. Numerous studies have investigated and attempted to clarify the molecular mechanisms of atherosclerosis; however, its pathogenesis has yet to be completely elucidated. Two expression profiling datasets, GSE43292 and GSE57691, were obtained from the Gene Expression Omnibus (GEO) database. The present study then identified the differentially expressed genes (DEGs), and functional annotation of the DEGs was performed. Finally, an atherosclerosis animal model and neural network prediction model was constructed to verify the relationship between hub gene and atherosclerosis. The results identified a total of 234 DEGs between the normal and atherosclerosis samples. The DEGs were mainly enriched in actin filament, actin binding, smooth muscle cells, and cytokine-cytokine receptor interactions. A total of 13 genes were identified as hub genes. Following verification of animal model, the common DEG, Tropomyosin 2 (TPM2), was found, which were displayed at lower levels in the atherosclerosis models and samples. In summary, DEGs identified in the present study may assist clinicians in understanding the pathogenesis governing the occurrence and development of atherosclerosis, and TPM2 exhibits potential as a promising diagnostic and therapeutic biomarker for atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Tropomiosina/metabolismo , Animales , Aorta Abdominal/patología , Aterosclerosis/patología , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Miocitos del Músculo Liso , Mapas de Interacción de Proteínas , Conejos , Túnica Íntima/patología
16.
BMC Geriatr ; 19(1): 71, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30836933

RESUMEN

BACKGROUND: Body posture is a fundamental indicator for assessing health and quality of life, especially for elderly people. Deciphering the changes in body posture occurring with age is a current topic in the field of geriatrics. The aims of this study were to assess the parameters of standing body posture in the global sagittal plane and to determine the dynamics of changes in standing body posture occurring with age and differences between men and women. METHODS: The measurements were performed on 226 individuals between the ages of 20 to 89 with a new photogrammetry, via which we assessed five postural angles - neck, thorax, waist, hip and knee. The data were analyzed with t-test, one-way ANOVA, linear regression model and generalized additive model. RESULTS: Among these segments studied here, neck changed most, while the middle segments of the body, waist and hip, were relative stable. Significant differences between men and women were found with respect to the angles of neck, thorax and hip. Three of the five postural angles were significantly influenced with aging, including increasing cervical lordosis, thoracic kyphosis and knee flexion, starting from no older than around 50 yrs. showed by fitting curve derived with generalized additive model. These changes were more marked among women. Besides, this study highlights the effects of age and gender on the complex interrelation between adjacent body segments in standing. CONCLUSIONS: The presented results showed changes in the parameters describing body posture throughout consecutive ages and emphasized that for an individualized functional analysis, it is essential to consider age-and gender-specific changes in the neck, thorax and knee. This paper presents useful externally generalizable information not only for clinical purposes but also to inform further research on larger numbers of subjects.


Asunto(s)
Envejecimiento/patología , Cifosis/patología , Postura , Vértebras Torácicas/patología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Postura/fisiología , Adulto Joven
17.
Thromb Res ; 170: 45-52, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30118867

RESUMEN

INTRODUCTION: Cardiac-cerebral vascular diseases (CCVDs) are global health problems due to the characteristic of high mortality. It is found that atherosclerosis (AS), a main cause of CCVDs, is significantly relevant to the change of intimal and media thickness. Neutrophil count (NEU) and neutrophil-lymphocyte ratio (N/L) are recognized possible risk factors for atherosclerosis (AS). However, there are few studies on the separate relationship between carotid intimal thickness, media thickness and NEU, N/L. This study explored the respective effects of NEU and N/L on AS and intimal, media thickness. MATERIALS AND METHODS: The χ2, Spearman's rho test, and multiple linear regression were implemented to analyze the relevance between blood parameters and intimal-media thickness. The potential factors, affecting non-depression time (NDT), is identified by univariate Cox regression. ROC curve was performed to determine the ability of blood parameters to predict intimal-media thickness. Immunohistochemistry was implemented. RESULTS AND CONCLUSION: Based on χ2, Spearman's rho test and multiple linear regression, NEU is related with intimal thickness (P < 0.05). Furthermore, NEU can predict the intimal thickness through the ROC curve. What's more, N/L is a risk factor of carotid media thickness (P < 0.05) by the Spearman's rho test, and is also correlated with poor NDT (P < 0.05) based on univariate Cox proportional regression analysis. Through ROC curve, N/L can predict the carotid media thickness. The carotid atherosclerotic endarterium is richest in macrophagocytes, and the arrangement of endotheliocytes is disordered. In summary, the increased NEU and N/L respectively have a strong correlation and precise predictability for carotid intimal and media thickness of atherosclerosis.


Asunto(s)
Aterosclerosis/sangre , Grosor Intima-Media Carotídeo/efectos adversos , Inflamación/sangre , Linfocitos/metabolismo , Neutrófilos/metabolismo , Animales , Femenino , Humanos , Masculino , Conejos , Factores de Riesgo
18.
Eur J Pharmacol ; 836: 1-10, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30107164

RESUMEN

Resveratrol has many beneficial biological actions, including cardiovascular protection and antithrombotic effects. Whether resveratrol inhibits oxidized low-density lipoprotein (ox-LDL)-induced Toll-like receptor 4 (TLR4) expression in activated platelets remains unclear. The present study investigated the effects of resveratrol on the TLR4-mediated inflammatory response in ox-LDL-activated platelets. The results showed that resveratrol suppressed TLR4 expression in ox-LDL- and lipopolysaccharide (LPS)-activated platelets. Similar effects were found in puromycin-pretreated platelets. This suggests that TLR4 expression might be related to protein synthesis in ox-LDL- and LPS-activated platelets. Further analysis confirmed that resveratrol attenuated the ox-LDL-induced phosphorylation of nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3). A mechanistic analysis indicated that the inhibitory effect of resveratrol on TLR4 expression was associated with the suppression of Akt phosphorylation. The combination of resveratrol and the PI3K inhibitor LY294002 had a synergistic effect on the inhibition of Akt phosphorylation and TLR4 expression. Moreover, resveratrol recovered sirtuin 1 expression and adenosine monophosphate-activated protein kinase phosphorylation, which was reduced by ox-LDL treatment. Furthermore, the platelet function analysis showed that resveratrol (100 µM) reduced platelet aggregation and adhesion and CD40 ligand/platelet factor 4 secretion in ox-LDL-treated platelets. Altogether, the present findings show that resveratrol inhibits the TLR4-mediated inflammatory response in ox-LDL-activated platelets, which may contribute to the treatment of thrombosis and atherosclerosis.


Asunto(s)
Plaquetas/efectos de los fármacos , Lipoproteínas LDL/farmacología , Activación Plaquetaria/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Resveratrol/farmacología , Factor de Transcripción STAT3/farmacología , Receptor Toll-Like 4/metabolismo , Plaquetas/metabolismo , Plaquetas/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Factor de Activación Plaquetaria , Adhesividad Plaquetaria/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción ReIA/metabolismo
19.
BMC Complement Altern Med ; 18(1): 220, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30029641

RESUMEN

BACKGROUND: Endothelial cells are sensitive to changes in both blood components and mechanical stimuli. Endothelial cells may undergo phenotypic changes, such as changes in adhesion protein expression, under different shear stress conditions. Such changes may impact platelet and monocyte adhesion to endothelial cells. This phenomenon is linked to chronic vascular inflammation and the development of atherosclerosis. In the present study, we investigated the effects of ginkgolide B on platelet and monocyte adhesion to human umbilical vein endothelial cells (HUVECs) under different conditions of laminar shear stress. METHODS: Platelet and monocyte adhesion to endothelial cells was determined by the Bioflux 1000. HUVECs were incubated with ginkgolide B or aspirin for 12 h, and then TNFα was added for 2 h to induce the inflammatory response under conditions of 1 and 9 dyn/cm2 laminar shear stress. The protein expression was analyzed by Western blot. RESULTS: The number of platelets that adhered was greater under conditions of 1 dyn/cm2 than under conditions of 9 dyn/cm2 of laminar shear stress (74.8 ± 19.2 and 59.5 ± 15.1, respectively). Ginkgolide B reduced the tumor necrosis factor α (TNFα)-induced increase in platelet and monocyte adhesion to HUVECs at 1 and 9 dyn/cm2 of laminar shear stress. In TNFα-treated HUVECs, the number of monocytes that adhered was greater under conditions of 1 dyn/cm2 of laminar shear stress compared with 9 dyn/cm2 (29.1 ± 4.9 and 22.7 ± 3.7, respectively). Ginkgolide B inhibited the TNFα-induced expression of vascular cell adhesion molecule-1(VCAM-1), VE-cadherin, and Cx43 in HUVECs at 1 and 9 dyn/cm2. The expression of these proteins was not different between 1 and 9 dyn/cm2. CONCLUSIONS: Ginkgolide B suppressed platelet and monocyte adhesion under different conditions of laminar shear stress. Moreover, ginkgolide B reduced VCAM-1, VE-cadherin and Cx43 expression in TNFα-treated HUVECs under laminar shear stress. This suggested that ginkgolide B might shed light on the treatment of inflammation in atherosclerosis.


Asunto(s)
Plaquetas/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Ginkgólidos/farmacología , Lactonas/farmacología , Monocitos/efectos de los fármacos , Línea Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Estrés Mecánico , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
20.
Lipids Health Dis ; 17(1): 143, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921279

RESUMEN

BACKGROUND: The mortality of atherosclerotic cerebrovascular disease is on the rise, and changes in intimal and media thickness are a leading cause of cerebral ischemia-related death. Levels of low density lipoprotein cholesterol (LDLC), total cholesterol (TC), and chronic stress (CS) are all recognized risk factors for atherosclerosis (AS). However, the leading independent risk factor is indistinct. This study explored the effects of chronic stress, LDLC, and TC on AS and intimal and media thickness, preliminarily explored the main risk factor of AS, and analyzed the related histocyte mechanisms for macrophages and endothelial cells. METHODS: Conditions include normal, high-fat diet (HF), and HF plus CS. The correlations between intimal and media thickness and general risk factors were analyzed using χ2, Spearman's rho test, and multiple linear regression. Univariate Cox regression was used to identify potential factors that affect the non-depression time (NDT). We performed a ROC curve to determine the ability of this condition to predict the thickness. Immunohistochemistry was implemented to detect macrophagocytes and endotheliocytes. RESULTS: Based on χ2 and Spearman's rho test, LDLC, TC, and CS are all related with intimal and media thickness (P < 0.05). However, in multiple linear regression, CS is still a risk factor of thickness (P < 0.05) but LDLC and TC are not. High levels of LDLC, TC, and CS were correlated with poor NDT (P < 0.05). This condition can predict the thickness sensitively. The endarterium is richest in macrophagocytes, and the arrangement of endotheliocytes is disordered and cracked under CS. CONCLUSION: CS is the main independent risk factor for AS and intimal (and media) thickness, rather than LDLC or TC.


Asunto(s)
Aterosclerosis/diagnóstico , LDL-Colesterol/sangre , Dieta Alta en Grasa , Hipercolesterolemia/sangre , Estrés Psicológico/complicaciones , Animales , Aterosclerosis/sangre , Aterosclerosis/etiología , Aterosclerosis/fisiopatología , Biomarcadores/análisis , Enfermedad Crónica , Femenino , Metabolismo de los Lípidos , Masculino , Curva ROC , Conejos , Factores de Riesgo , Estrés Psicológico/sangre , Estrés Psicológico/fisiopatología , Túnica Íntima/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...