Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 164: 107318, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37595517

RESUMEN

The advent of optically pumped magnetometer-based magnetoencephalography (OPM-MEG) has introduced new tools for neuroscience and clinical research. As it is still under development, the achievable performance of OPM-MEG remains to be tested, particularly in terms of source localization accuracy, which can be influenced by various factors, including software and hardware aspects. A feasible approach to comprehensively test the performance of the OPM-MEG system is to utilize a phantom that simulates the actual electrophysiological properties of the head while ensuring the precise locations of dipole sources. However, conventional water or dry phantoms can only simulate a single-sphere head model. In this work, a more realistic three-layer phantom was designed and fabricated. The proposed phantom included the scalp, skull, and cortex tissues of the head, as well as the simulated dipole sources. The scalp and cortex tissues were simulated using an electrolyte solution, while the dipole source was constructed from a coaxial cable. All main structures in the phantom were produced using 3D printing techniques, making the phantom easy to manufacture. The fabricated phantom was tested on a 36-channel OPM-MEG system, and the results showed that the dipole source inside the phantom could generate a magnetic field distribution on the scalp that was close to its theoretical values. The average source localization accuracy of 5.51 mm verified the effectiveness of the designed phantom and the performance of our OPM-MEG system. This work provides an effective test platform for OPM-MEG.


Asunto(s)
Corteza Cerebral , Magnetoencefalografía , Fantasmas de Imagen , Campos Magnéticos , Cuero Cabelludo
2.
Sci Rep ; 13(1): 8332, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221287

RESUMEN

The effects of different tillage management practices on the soil aggregates, soil carbon stock (STCS), and soil nitrogen stock (STNS) are key issues in agricultural research. We conducted an 8-year field experiment to evaluate the effects of different tillage methods: stubble cleaning and ridging (CK), no-tillage with stubble retention (NT), plow tillage (PT), and width lines (WL) on soil aggregates, STCS, and STNS in the black soil corn continuous cropping area of Northeast China. Different tillage methods predominantly affected the soil aggregates in the 2-0.25 mm and 0.25-0.053 mm size classes. The PT methods increased the proportion of macroaggregates and improved the quality of the soil aggregates. PT methods significantly increased the soil organic carbon content at the 0-30 cm layer by changing the number of soil macroaggregates. The PT practices are better strategies for enhancing soil carbon sinks, and the WL method increased the total amount of N in the soil pool. Our results suggest that the PT and WL methods are the best strategies for improving the quality of soil aggregates and preventing/reducing depletion of soil C and N in a black soil area of Northeast China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA