Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Microbiol ; 297: 110199, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39096789

RESUMEN

Japanese encephalitis virus (JEV) is a mosquito-borne, zoonotic orthoflavivirus causing human encephalitis and reproductive disorders in pigs. Cell-intrinsic antiviral restriction factors are the first line of defense that prevent a virus from establishing a productive infection, while the molecular mechanism of the virus-host interaction is still not fully understood. Our in vitro experiments demonstrated that the Solute Carrier Family 25 Member 12 (SLC25A12) interacted with the JEV nonstructural protein 1 (NS1) and inhibited JEV replication. Furthermore, we showed that knockdown or knockout of SLC25A12 promoted JEV replication, while overexpression of SLC25A12 repressed viral replication. Finally, we demonstrated that SLC25A12 increased IRF7 mRNA levels, which promoted IFN-ß expression and subsequently induced antiviral effects. Collectively, our study revealed that SLC25A12 interacted with NS1, inhibiting viral RNA synthesis and transcription and enhancing type I interferon induction for antiviral effects.

2.
J Virol ; 98(8): e0032724, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082785

RESUMEN

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly infectious disease afflicting domestic pigs and wild boars. It exhibits an alarming acute infection fatality rate of up to 100%. Regrettably, no commercial vaccines or specific drugs for combating this disease are currently available. This study evaluated the anti-ASFV activities in porcine alveolar macrophages, 3D4/21 cells, and PK-15 cells of four bis-benzylisoquinoline alkaloids (BBAs): cepharanthine (CEP), tetrandrine, fangchinoline, and iso-tetrandrine. Furthermore, we demonstrated that CEP, which exhibited the highest selectivity index (SI = 81.31), alkalized late endosomes/lysosomes, hindered ASFV endosomal transport, disrupted virus uncoating signals, and thereby inhibited ASFV internalization. Additionally, CEP disrupted ASFV DNA synthesis, leading to the inhibition of viral replication. Moreover, berbamine was labeled with NBD to synthesize a fluorescent probe to study the cellular location of these BBAs. By co-staining with Lyso-Tracker and lysosome-associated membrane protein 1, we demonstrated that BBAs target the endolysosomal compartments for the first time. Our data together indicated that BBAs are a class of natural products with significant inhibitory effects against ASFV infection. These findings suggest their potential efficacy as agents for the prevention and control of ASF, offering valuable references for the identification of potential drug targets.IMPORTANCEThe urgency and severity of African swine fever (ASF) underscore the critical need for effective interventions against this highly infectious disease, which poses a grave threat to domestic pigs and wild boars. Our study reveals the potent anti-African swine fever virus (ASFV) efficacy of bis-benzylisoquinoline alkaloids (BBAs), particularly evident in the absence of progeny virus production under a 5 µM concentration treatment. The structural similarity among cepharanthine, tetrandrine, fangchinoline, and iso-tetrandrine, coupled with their analogous inhibitory stages and comparable selectivity indexes, strongly suggests a shared antiviral mechanism within this drug category. Further investigation revealed that BBAs localize to lysosomes and inhibit the internalization and replication of ASFV by disrupting the endosomal/lysosomal function. These collective results have profound implications for ASF prevention and control, suggesting the potential of the investigated agents as prophylactic and therapeutic measures. Furthermore, our study offers crucial insights into identifying drug targets and laying the groundwork for innovative interventions.


Asunto(s)
Virus de la Fiebre Porcina Africana , Antivirales , Bencilisoquinolinas , Endosomas , Lisosomas , Internalización del Virus , Replicación Viral , Animales , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Virus de la Fiebre Porcina Africana/fisiología , Internalización del Virus/efectos de los fármacos , Bencilisoquinolinas/farmacología , Replicación Viral/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/virología , Porcinos , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Endosomas/virología , Antivirales/farmacología , Línea Celular , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/tratamiento farmacológico , Fiebre Porcina Africana/metabolismo , Guanina/análogos & derivados , Guanina/farmacología , Alcaloides/farmacología , Macrófagos Alveolares/virología , Macrófagos Alveolares/efectos de los fármacos , Benzodioxoles
3.
Virol Sin ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871182

RESUMEN

The H10 subtype avian influenza virus (AIV) poses an ongoing threat to both birds and humans. Notably, fatal human cases of H10N3 and H10N8 infections have drawn public attention. In 2022, we isolated two H10N3 viruses (A/chicken/Shandong/0101/2022 and A/chicken/Shandong/0603/2022) from diseased chickens in China. Genome analysis revealed that these viruses were genetically associated with human-origin H10N3 virus, with internal genes originating from local H9N2 viruses. Compared to the H10N8 virus (A/chicken/Jiangxi/102/2013), the H10N3 viruses exhibited enhanced thermostability, increased viral release from erythrocytes, and accumulation of hemagglutinin (HA) protein. Additionally, we evaluated the pathogenicity of both H10N3 and H10N8 viruses in mice. We found that viral titers could be detected in the lungs and nasal turbinates of mice infected with the two H10N3 viruses, whereas H10N8 virus titers were detectable in the lungs and brains of mice. Notably, the proportion of double HA Q222R and G228S mutations in H10N3 viruses has increased since 2019. However, the functional roles of the Q222R and G228S double mutations in the HA gene of H10N3 viruses remain unknown and warrant further investigation. Our study highlights the potential public health risk posed by the H10N3 virus. A spillover event of AIV to humans could be a foretaste of a looming pandemic. Therefore, it is imperative to continuously monitor the evolution of the H10N3 influenza virus to ensure targeted prevention and control measures against influenza outbreaks.

4.
Virology ; 597: 110121, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917688

RESUMEN

The H7 subtype avian influenza viruses are circulating widely worldwide, causing significant economic losses to the poultry industry and posing a serious threat to human health. In 2019, H7N2 and H7N9 co-circulated in Chinese poultry, yet the risk of H7N2 remained unclear. We isolated and sequenced four H7N2 viruses from chickens, revealing them as novel reassortants with H7N9-derived HA, M, NS genes and H9N2-derived PB2, PB1, PA,NP, NA genes. To further explore the key segment of pathogenicity, H7N2-H7N9NA and H7N2-H9N2HA single-substitution were constructed. Pathogenicity study showed H7N2 isolates to be highly pathogenic in chickens, with H7N2-H7N9NA slightly weaker than H7N2-Wild type. Transcriptomic analysis suggested that H7N9-derived HA genes primarily drove the high pathogenicity of H7N2 isolates, eliciting a strong inflammatory response. These findings underscored the increased threat posed by reassorted H7N2 viruses to chickens, emphasizing the necessity of long-term monitoring of H7 subtype avian influenza viruses.


Asunto(s)
Pollos , Subtipo H7N2 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Virus Reordenados , Animales , Pollos/virología , Gripe Aviar/virología , Gripe Aviar/transmisión , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Virus Reordenados/patogenicidad , Virus Reordenados/genética , Subtipo H7N2 del Virus de la Influenza A/patogenicidad , Subtipo H7N2 del Virus de la Influenza A/genética , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/transmisión , Virulencia , Filogenia , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/fisiología , China
5.
Vet J ; 306: 106186, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936461

RESUMEN

African swine fever (ASF) is an acute, febrile, and highly lethal infectious disease in pigs caused by the African swine fever virus (ASFV). Effective detection methods and strict biosecurity measures are crucial for preventing and controlling ASF, especially since there are currently no commercially available vaccines or antiviral drugs to combat ASFV infection effectively. However, the emergence of low-virulence strains of ASFV in recent years has led to false-positive results, highlighting the importance of early-produced antibody detection methods. Therefore, detecting antibodies against ASFV produced early in the infection can facilitate the prompt identification of infected pigs. This study focused on the p30 protein, an early expressed protein during ASFV infection, to develop an indirect ELISA. This method was established using the HEK293F suspension cell expression system, which has the ability to produce large quantities of correctly folded proteins with normal functionality. In this study, we developed an indirect ELISA test utilizing the p30 recombinant protein produced by the HEK293F suspension cell expression system as the antigen coating. The concentration of the p30 protein obtained from the HEK293F suspension cell expression system was measured at 4.668 mg/mL, serving as the foundation for establishing the indirect ELISA. Our findings indicate that the indirect ELISA method exhibits a sensitivity of 1:12800. Furthermore, it demonstrates high specificity and excellent reproducibility. Comparing our results to those obtained from the commercial kit, we found a coincidence rate of 98.148 % for the indirect ELISA. In summary, we have developed a sensitive method for detecting ASFV, providing a valuable tool for monitoring ASFV infection in pig herds.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Animales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Ensayo de Inmunoadsorción Enzimática/métodos , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/inmunología , Porcinos , Células HEK293 , Virus de la Fiebre Porcina Africana/inmunología , Humanos , Proteínas Recombinantes/inmunología , Fosfoproteínas , Proteínas Virales
6.
Vet Microbiol ; 293: 110099, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677125

RESUMEN

Japanese encephalitis virus (JEV) is a pathogen with a substantial impact on both livestock and human health. However, the critical host factors in the virus life cycle remain poorly understood. Using a library comprising 123411 small guide RNAs (sgRNAs) targeting 19050 human genes, we conducted a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based screen to identify essential genes for JEV replication. By employing knockout or knockdown techniques on genes, we identified eleven human genes crucial for JEV replication, such as prolactin releasing hormone receptor (PRLHR), activating signal cointegrator 1 complex subunit 3 (ASCC3), acyl-CoA synthetase long chain family member 3 (ACSL3), and others. Notably, we found that PRLHR knockdown blocked the autophagic flux, thereby inhibiting JEV infection. Taken together, these findings provide effective data for studying important host factors of JEV replication and scientific data for selecting antiviral drug targets.


Asunto(s)
Sistemas CRISPR-Cas , Virus de la Encefalitis Japonesa (Especie) , ARN Guía de Sistemas CRISPR-Cas , Replicación Viral , Replicación Viral/genética , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/fisiología , Humanos , ARN Guía de Sistemas CRISPR-Cas/genética , Biblioteca de Genes , Animales , Interacciones Huésped-Patógeno/genética , Encefalitis Japonesa/virología , Línea Celular , Células HEK293 , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA