Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chempluschem ; : e202400158, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38733075

RESUMEN

Photocatalytic technology can efficiently convert solar energy to chemical energy and this process is considered as one of the green and sustainable technology for practical implementation. In recent years, metal-organic frameworks (MOFs) have attracted widespread attention due to their unique advantages and have been widely applied in the field of photocatalysis. Among them, noble metals have contributed significant advances to the field as effective catalysts in photocatalytic reactions. Importantly, noble metals can also form a synergistic catalytic effect with MOFs to further improve the efficiency of photocatalytic reactions. However, how to precisely control the synergistic effect between MOFs and noble metals to improve the photocatalytic performance of materials still needs to be further studied. In this review, the synergistic effects of MOFs and noble metal catalysts in photocatalytic reactions are firstly summarized in terms of noble metal nanoparticles, noble metal monoatoms, noble metal compounds, and noble metal complexes, and focus on the mechanisms and advantages of these synergistic effects, so as to provide useful guidance for the further research and application of MOFs and contribute to the development of the field of photocatalysis.

2.
Environ Res ; 252(Pt 3): 119022, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685304

RESUMEN

Groundwater from different aquifers in the Zhanjiang area suffers from different degrees of nitrogen pollution, which poses a serious threat to the health of urban and rural residents as well as the surrounding aquatic ecological environment. However, neither the water chemistry and microbial community characteristics in different aquifer media nor the sources of inorganic nitrogen pollution have been extensively studied. This study integrated water quality parameters, dual isotopes (δ15N-NO3- and δ18O-NO3-), and 16S rRNA data to clarify the hydrochemical and microbial characteristics of loose rock pore water (LRPW), layered bedrock fissure water (LBFW), and volcanic rock pore fissure water (VRPFW) in the Zhanjiang area and to determine inorganic nitrogen pollution and sources. The results show that the hydrochemistry of groundwater in different aquifers is complex and diverse, which is mainly affected by rock weathering and atmospheric precipitation, and the cation exchange is strong. High NO3- concentration reduces the richness of the microbial community (VRPFW). There are a large number of bacteria related to nitrogen (N) cycle in groundwater and nitrification dominated the N transformation. A quarter of the samples exceeded the relevant inorganic nitrogen index limits specified in the drinking water standard for China. The NO3- content is highest in VRPFW and the NH4+ content is highest in shallow loose rock pore water (SLRPW). In general, NO3-/Cl-, dual isotope (δ15N-NO3- and δ18O-NO3-) data and MixSIAR quantitative results indicate manure and sewage (M&S) and soil organic nitrogen (SON) are the main sources of NO3-. In LRPW, as the depth increases, the contribution rate of M&S gradually decreases, and the contribution rate of SON gradually increases. The results of uncertainty analysis show that the UI90 values of SON and M&S are higher. This study provides a scientific basis for local relevant departments to address inorganic nitrogen pollution in groundwater.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Nitrógeno , Contaminantes Químicos del Agua , China , Agua Subterránea/química , Agua Subterránea/microbiología , Agua Subterránea/análisis , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Bacterias , ARN Ribosómico 16S/análisis , Microbiota
3.
Comput Struct Biotechnol J ; 23: 491-505, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38249783
4.
J Cancer Res Clin Oncol ; 149(19): 17015-17026, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37749329

RESUMEN

BACKGROUND: Renal clear cell carcinoma (RCC) is a common cancer in urinary system with increasing incidence. At present, targeted therapy and immunotherapy are the main therapeutic programs in clinical therapy. To develop novel drugs and provide new ideas for clinical therapy, the identification of potential ccRCC subtypes and potential target genes or pathways has become a current research focus. AIM: The aim of this study was to explore the underlying mechanisms of mitochondrial function in ccRCC. This regulatory pathway is closely related to tumor development and metastasis in ccRCC patients, and their abnormal changes may affect the prognosis of cancer patients. Therefore, we decided to construct a prognostic model of ccRCC patients based on mitochondrial regulatory genes, aiming to provide new methods and ideas for clinical therapy. RESULT: The 5-year survival prediction model based on iterative LASSO reached 0.746, and the cox model based on coxph reached C-index = 0.77, integrated c/D AUC = 0.61, and integrated brier score = 0.14. The rsf model based on randomForestSRC was built with C-index = 0.82, integrated c/D AUC = 0.69, and integrated brier score = 0.11. The results show that mitochondrial regulatory pathway is a potential target pathway for clinical therapy of ccRCC, which can provide guidelines for clinical targeted therapy, immunotherapy and other first-line therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Inmunoterapia , Aprendizaje Automático , Mitocondrias/genética , Neoplasias Renales/genética , Neoplasias Renales/terapia , Pronóstico
5.
Sci Total Environ ; 903: 166654, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37647948

RESUMEN

Heterotrophic sulfur-based autotrophic denitrification is a promising biological denitrification technology for low COD/TN (C/N) wastewater due to its high efficiency and low cost. Compared to the conventional autotrophic denitrification process driven by elemental sulfur, the presence of polysulfide in the system can promote high-speed nitrogen removal. However, autotrophic denitrification mediated by polysulfide has not been reported. This study investigated the denitrification performance and microbial metabolic mechanism of heterotrophic denitrification, sulfur-based autotrophic denitrification, and mixotrophic denitrification using lime sulfur and butanediol as electron donors. When the influent C/N was 1, the total nitrogen removal efficiency of the mixotrophic denitrification process was 1.67 and 1.14 times higher than that of the heterotrophic and sulfur-based autotrophic denitrification processes, respectively. Microbial community alpha diversity and principal component analysis indicated different electron donors lead to different evolutionary directions in microbial communities. Metagenomic analysis showed the enriched denitrifying bacteria (Thauera, Pseudomonas, and Pseudoxanthomonas), dissimilatory nitrate reduction to ammonia bacteria (Hydrogenophaga), and sulfur oxidizing bacteria (Thiobacillus) can stably support nitrate reduction. Analysis of metabolic pathways revealed that complete denitrification, dissimilatory nitrate reduction to ammonia, and sulfur disproportionation are the main pathways of the N and S cycle. This study demonstrates the feasibility of a mixotrophic denitrification process driven by a combination of lime sulfur and butanediol as a cost-effective solution for treating nitrogen pollution in low C/N wastewater and elucidates the N and S metabolic pathways involved.

6.
Oncol Res ; 31(3): 255-270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305384

RESUMEN

As a common tumor of the urinary system, the morbidity and mortality related to renal carcinoma, are increasing annually. Clear cell renal cell carcinoma (CCRCC) is the most common subtype of renal cell carcinoma, accounting for approximately 75% of the total number of patients with renal cell carcinoma. Currently, the clinical treatment of ccRCC involves targeted therapy, immunotherapy, and a combination of the two. In immunotherapy, PD-1/PD-L1 blocking of activated T cells to kill cancer cells is the most common treatment. However, as treatment progresses, some patients gradually develop resistance to immunotherapy. Meanwhile, other patients experience great side effects after immunotherapy, resulting in a survival status far lower than the expected survival rate. Based on these clinical problems, many researchers have been working on the improvement of tumor immunotherapy in recent years and have accumulated numerous research results. We hope to find a more suitable direction for future immunotherapy for ccRCC by combining these results and the latest research progress.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Neoplasias Renales/tratamiento farmacológico
8.
Sci Total Environ ; 871: 162043, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36754322

RESUMEN

Ferrate (VI) (Fe (VI)) is a promising, environmentally friendly multifunctional oxidant widely applied in organic compound degradation. Oxidative kinetics of the apparent second-order rate constants (kapp) of Fe (VI) with organic compounds are critical for modeling oxidation processes. Herein, a quantitative structure-activity relationship (QSAR) model was developed using particle swarm optimization and an extreme learning machine to better understand the laws of the kapp values of organic compounds, including 33 aliphatic and aromatic hydrocarbon derivatives, during degradation by Fe (VI). Seven components-electronic hardness (H), electronic softness (S), ratio of oxygen to carbon atoms (On/Cn), energy of the highest occupied molecular orbital (EHOMO), vertical ionization potential (VIP), maximum nucleophilic reaction index (f(+)x), and minimum relative electrophilicity index (REn) constitute the critical molecular parameters. The developed QSAR model was verified on the basis of the coefficient of determination (R2) and the root mean square error (RMSE): for the training set, R2 = 0.924 and RMSE = 1.186, whereas for the test set, R2 = 0.996, and RMSE = 0.352. The applicability, reliability, and predictability of the model were verified by estimating the applicability domain (AD) of the model. Furthermore, QSAR models constructed using different methods were compared, and the main impact descriptors and conclusions obtained from previous studies were theoretically analyzed. Results indicate that constructing the QSAR model facilitates kapp prediction for Fe (VI) in the degradation of various organic compounds, improves the understanding of the degradation mechanism, and reduces the pressure on human and material resources caused by experiments.

9.
Front Oncol ; 12: 1009984, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249029

RESUMEN

Anoikis is a specialized mode of programmed cell death. Specifically, once cells detach from the original extracellular matrix, an apoptotic program is initiated, preventing colonization of the cells in distant parts of the organ. Therefore, both distant metastasis and colonization of cancer cells rely on the anoikis resistance of cancer cells. Bioinformatics analysis was performed to confirm the relation of anoikis to kidney renal cell carcinoma (KIRC). To construct a prognostic model for patients with KIRC, we investigated several genes of the anoikis pathway most closely related to KIRC and also contrasted the effects of common anticancer drugs on the KIRC pathway. Besides KIRC, we explored the expression of anoikis-related genes in various other cancers. We classified patients with KIRC into three clusters based on the coefficients and mRNA expression levels of anoikis-related genes selected using the GSVA algorithm. We used the GDSC database to predict the response of the anoikis pathway to common anticancer drugs and explored the potential targets of the anoikis pathway in KIRC. We then analyzed the response of common immunotherapies to the anoikis pathway to analyze the correlation between anoikis and immune checkpoint inhibitor therapy. Finally, eleven cancer-related genes were screened and a prognostic model was constructed using LASSO regression.

10.
Am J Cancer Res ; 12(8): 3947-3966, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119838

RESUMEN

Clear cell renal cell carcinoma (ccRCC) accounts for 75% of the total incidence of renal cancer, and every year the number of morbidity and mortality increases, posing a serious threat to public health. The current main treatment methods for kidney cancer include drug-targeted therapy and immunotherapy. Although there are many treatment options for kidney cancer, they all have limitations, including drug resistance, unsatisfied long-term benefits, and adverse effects. Therefore, it is crucial to identify more effective therapeutic targets. As a newly discovered mechanism of cell death, copper-induced cell death (cuprotosis) is closely related to changes in cell metabolism, particularly in copper metabolism. Current studies have shown that the key signaling pathway of cuprotosis, the FDX1 (Ferredoxin 1)-LIAS (Lipoic Acid Synthetase) axis, plays an important role in the regulation of cellular oxidative stress, which can directly affect cell survival via inducing or promoting cancer cell death. Therefore, we speculated that this regulatory cell death mechanism might serve as a potential therapeutic target for the clinical treatment of renal cancer. To test this, we first performed a pan-cancer analysis based on cuprotosis-related genomic and transcriptomic levels to reveal the expression of cuprotosis in cancer. Next, GSVA-clustering analysis was performed with data from the Cancer Genome Atlas (TCGA) cohort, and the cohort was divided into three clusters according to the gene enrichment levels of cuprotosis marker genes. In addition, we analyzed the potential of using cuprotosis in clinical treatment from multiple perspectives, including chemotherapeutic drug susceptibility test, immune target inhibition treatment responsiveness, and histone modification. Combining the results of multi-omics analysis, we focused on the feasibility of this novel regulatory cell death mechanism in ccRCC treatment and further constructed a prognostic model. Finally, we verified our results by integrating the patient's gene expression information and radiomics information. Our study provides new insights into the development and clinical application of targeting cuprotosis pathway.

11.
Front Pharmacol ; 13: 918647, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795559

RESUMEN

Renal cell carcinoma (RCC) is a type of cancer with an increasing rate of morbidity and mortality and is a serious threat to human health. The treatment of RCC, especially kidney renal clear cell carcinoma (KIRC), has always been the focus of clinical treatment. Using The Cancer Genome Atlas (TCGA) database as a starting point, we explored the feasibility of applying the pyroptosis mechanism to KIRC treatment by searching for cancer markers associated with pyroptosis and cancer treatment signatures. The obtained samples were clustered using unsupervised clustering analysis to define the different KIRC subtypes with different pyroptosis expression levels. Based on this, a gene expression analysis was performed to explore the carcinogenic mechanism that is markedly related to pyroptosis. The Genomics of Drug Sensitivity in Cancer database and single sample gene set enrichment analysis (ssGSEA) algorithm were used to analyze the different treatment methods of the current prominent KIRC to determine whether pyroptosis plays a role. Finally, LASSO regression was used to screen for related genes and construct a model to predict patient prognosis. The expression levels of GSDME, CASP3, CASP4, CASP5, CHMP3, and CHMP4C were incorporated into the model construction. After verification, the prediction accuracy of the 3-, 5-, 7- and 10 years survival rates of our prognostic model were 0.66, 0.701, 0.719, and 0.728, respectively. Through the above analysis, we demonstrated the feasibility of pyroptosis in the clinical treatment of KIRC and provided novel ideas and suggestions for the clinical treatment of KIRC.

12.
Front Immunol ; 13: 837293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359956

RESUMEN

The development of cancer treatment methods is constantly changing. For common cancers, our treatment methods are still based on conventional treatment methods, such as chemotherapy, radiotherapy, and targeted drug therapy. Nevertheless, the emergence of tumor resistance has a negative impact on treatment. Regulated cell death is a gene-regulated mode of programmed cell death. After receiving specific signal transduction, cells change their physical and chemical properties and the extracellular microenvironment, resulting in structural destruction and decomposition. As research accumulates, we now know that by precisely inducing specific cell death patterns, we can treat cancer with less collateral damage than other treatments. Many newly discovered types of RCD are thought to be useful for cancer treatment. However, some experimental results suggest that some RCDs are not sensitive to cancer cell death, and some may even promote cancer progression. This review summarizes the discovered types of RCDs, reviews their clinical efficacy in cancer treatment, explores their anticancer mechanisms, and discusses the feasibility of some newly discovered RCDs for cancer treatment in combination with the immune and tumor microenvironment.


Asunto(s)
Neoplasias , Muerte Celular Regulada , Terapia Combinada , Humanos , Inmunoterapia/métodos , Neoplasias/patología , Neoplasias/terapia , Microambiente Tumoral
13.
Foods ; 11(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35159468

RESUMEN

With a high moisture content, fresh peppers are perishable and rot easily. Drying is essential for shelf-life extension. The natural thin wax layer on the pepper surface hinders moisture transfer. Traditionally, chemical dipping or mechanical pricking is used to remove this wax layer. However, in chemical dipping, chemical residues can trigger food-safety issues, while the low efficiency of mechanical pricking hinders its industrial application. Feasible pretreatment methods are advantageous for industrial use. Here, an emerging pretreatment technique (high-humidity hot-air impingement blanching, HHAIB) was used for peppers before drying and its effects on drying characteristics, microstructure, and polyphenol oxidase (PPO) activity were explored. The impact of drying temperature on color parameters and red pigment content of pulsed-vacuum-dried peppers was also evaluated. PPO activity was reduced to less than 20% after blanching at 110 °C for 60 s. HHAIB reduced drying time and PPO activity and promoted chemical-substance release. Effective water diffusivity was highest (5.01 × 10-10 m2/s) after blanching at 110 °C for 90 s, and the brightness value and red pigment content were highest (9.94 g/kg) at 70 °C. HHAIB and pulsed vacuum drying are promising pretreatment and drying methods for enhancing the drying rate and quality of red peppers.

14.
Oxid Med Cell Longev ; 2021: 5561124, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721758

RESUMEN

Oxidative stress (OS) refers to endogenous and/or exogenous stimulation when the balance between oxidation and antioxidants in the body is disrupted, resulting in excessive production of free radicals. Excessive free radicals exert a series of negative effects on the body, which can result in the oxidation of and infliction of damage on biological molecules and further cause cell death and tissue damage, which are related to many pathological processes. Pathways related to OS have always been the focus of medical research. Several studies are being conducted to develop strategies to treat cancer by exploring the OS pathways. Therefore, this study is aimed at determining the correlation between the OS pathway and kidney renal clear cell carcinoma (KIRC) through bioinformatics analysis, at proving the effect of common anticancer drugs on the OS pathway, and at constructing a prognosis model of patients with KIRC based on several genes with the strongest correlation between the OS pathway and KIRC. We first collected and analyzed gene expression and clinical information of related patients through TCGA database. Then, we divided the samples into three clusters according to their gene expression levels obtained through cluster analysis. Using these three clusters, we performed GDSC drug analysis and GSEA analysis and examined the correlation among the OS pathway, histone modification, and immune cell infiltration. We also analyzed the response of anti-PD-1 and anti-CTLA-4 to the OS pathway. Thereafter, we used LASSO regression to select the most suitable nine genes, combined with the clinicopathological characteristics to establish the prognosis model of patients with KIRC, and verified the scientific precision of the model. Finally, tumor mutational burden was calculated to verify whether patients would benefit from immunotherapy. The results of this study may provide a reference for the establishment of treatment strategies for patients with KIRC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Perfilación de la Expresión Génica , Genómica , Neoplasias Renales/genética , Estrés Oxidativo , Transcriptoma , Antineoplásicos Inmunológicos/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Toma de Decisiones Clínicas , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Mutación , Medicina de Precisión , Valor Predictivo de las Pruebas , Pronóstico
15.
Front Oncol ; 11: 727778, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604067

RESUMEN

Kidney cancer is a cancer with an increasing incidence in recent years. Clear cell renal cell carcinoma (ccRCC) accounts for up to 80% of all kidney cancers. The understanding of the pathogenesis, tumor progression, and metastasis of renal carcinoma is not yet perfect. Kidney cancer has some characteristics that distinguish it from other cancers, and the metabolic aspect is the most obvious. The specificity of glucose and lipid metabolism in kidney cancer cells has also led to its being studied as a metabolic disease. As the most common type of kidney cancer, ccRCC has many characteristics that represent the specificity of kidney cancer. There are features that we are very concerned about, including the presence of lipid droplets in cells and the obesity paradox. These two points are closely related to glucose metabolism and lipid metabolism. Therefore, we hope to explore whether metabolic changes affect the occurrence and development of kidney cancer by looking for evidence of changes on expression at the genomic and protein levels in glucose metabolism and lipid metabolism in ccRCC. We begin with the representative phenomenon of abnormal cancer metabolism: the Warburg effect, through the collection of popular metabolic pathways and related genes in the last decade, as well as some research hotspots, including the role of ferroptosis and glutamine in cancer, systematically elaborated the factors affecting the incidence and metastasis of kidney cancer. This review also identifies the similarities and differences between kidney cancer and other cancers in order to lay a theoretical foundation and provide a valid hypothesis for future research.

16.
Biomed Res Int ; 2021: 9972968, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513998

RESUMEN

In our study, the value of cholesterol biosynthesis is related to clinical analysis in 32 cancer forms in the GSEA database facility. We have a mutation between 25 CBRGs. In The Cancer Genome Atlas database, clear cell renal cell carcinoma (ccRCC, n = 539) was upregulated or downregulated in 22 out of 25 cases (n = 72) compared with normal kidney tissue. Then, using LASSO regression analysis, the survival model that is based on nine risk-related CBRGs (CYP51A1, HMGCR, HMGCS1, IDI1, FDFT1, SQLE, ACAT2, FDPS, and NSDHL) is established. ROC curves confirmed the good omen of the new survival mode, and the area under the curve is 0.72 (5 years) and 0.709 (10 years). High SQLE and ACAT2 expression and low NSDHL, FDPS, CYP51A1, FDFT1, HMGCS1, HMGCR, and IDI1 expression were closely related to patients with high-risk renal clear cell carcinoma. Two types of Cox regression, uni- and multivariate, were used to determine risk scores, age, staging, and grade as independent risk factors for prognosis in patients with clear cell renal cell carcinoma. The results showed the prediction model established by 9 selected CBRGs could predict the prognosis more accurately.


Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Colesterol/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/mortalidad , China , Colesterol/biosíntesis , Bases de Datos Genéticas , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Estimación de Kaplan-Meier , Riñón/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Nomogramas , Pronóstico , Modelos de Riesgos Proporcionales , Curva ROC , Factores de Riesgo , Transcriptoma/genética
17.
Oxid Med Cell Longev ; 2021: 6613151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194607

RESUMEN

The mTOR pathway, a major signaling pathway, regulates cell growth and protein synthesis by activating itself in response to upstream signals. Overactivation of the mTOR pathway may affect the occurrence and development of cancer, but no specific treatment has been proposed for targeting the mTOR pathway. In this study, we explored the expression of mTOR pathway genes in a variety of cancers and the potential compounds that target the mTOR pathway and focused on an abnormal type of cancer, kidney renal clear cell carcinoma (KIRC). Based on the mRNA expression of the mTOR pathway gene, we divided KIRC patient samples into three clusters. We explored possible therapeutic targets of the mTOR pathway in KIRC. We predicted the IC50 of some classical targeted drugs to analyze their correlation with the mTOR pathway. Subsequently, we investigated the correlation of the mTOR pathway with histone modification and immune infiltration, as well as the response to anti-PD-1 and anti-CTLA-4 therapy. Finally, we used a LASSO regression analysis to construct a model to predict the survival of patients with KIRC. This study shows that mTOR scores can be used as tools to study various treatments targeting the mTOR pathway and that we can predict the recovery of KIRC patients through the expression of mTOR pathway genes. These research results can provide a reference for future research on KIRC patient treatment strategies.


Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Neoplasias Renales/genética , Neoplasias Renales/terapia , Serina-Treonina Quinasas TOR/metabolismo , Carcinoma de Células Renales/patología , Humanos , Neoplasias Renales/patología , Pronóstico
18.
J Immunol Res ; 2021: 6617841, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33628845

RESUMEN

As the most prevalent internal eukaryotic modification, N6-methyladenosine (m6A) is installed by methyltransferases, removed by demethylases, and recognized by readers. However, there are few studies on the role of m6A in clear cell renal cell carcinoma (ccRCC). In this study, we researched the RNA-seq transcriptome data of ccRCC in the TCGA dataset and used bioinformatics analyses to detect the relationship between m6A RNA methylation regulators and ccRCC. First, we compared the expression of 18 m6A RNA methylation regulators in ccRCC patients and normal tissues. Then, data from ccRCC patients were divided into two clusters by consensus clustering. LASSO Cox regression analysis was used to build a risk signature to predict the prognosis of patients with ccRCC. An ROC curve, univariate Cox regression analysis, and multivariate Cox regression analysis were used to verify this risk signature's predictive ability. Then, we internally validated this signature by random sampling. Finally, we explored the role of the genes in the signature in some common pathways. Gene distribution between the two subgroups was different; cluster 2 was gender-related and had a worse prognosis. IGF2BP3, IGF2BP2, HNRNPA2B1, and METTL14 were chosen to build the risk signature. The overall survival of the high- and low-risk groups was significantly different (p = 7.47e - 12). The ROC curve also indicated that the risk signature had a decent predictive significance (AUC = 0.72). These results imply that the risk signature has a potential value for ccRCC treatment.


Asunto(s)
Adenosina/análogos & derivados , Carcinoma de Células Renales/etiología , Neoplasias Renales/etiología , ARN/genética , Adenosina/metabolismo , Biomarcadores de Tumor , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/patología , Biología Computacional/métodos , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/mortalidad , Neoplasias Renales/patología , Metilación , Pronóstico , Modelos de Riesgos Proporcionales , ARN/metabolismo , Transducción de Señal
19.
Biomed Res Int ; 2016: 5791510, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833918

RESUMEN

Endometriosis is an estrogen-dependent disease. We previously found that the expression of Activin A was upregulated in the peritoneal fluid of patients with endometriosis. The results of the present study indicated that Activin A induced estradiol secretion and P450arom expression in endometrial stromal cells (ESCs) derived from endometriosis patients. The mechanism of estrogenic synthesis was regulated by the Activin-Smad pathway in endometrial lesions. The data showed that the effect of Activin A on ESCs was partially abrogated by pretreatment with an inhibitor of ALK4 (the type I receptor, ActRIB) and Smad4-siRNA. Cumulatively, these data suggest that Activin A promotes the secretion of estradiol from ESCs by increasing the expression of P450arom via the ALK4-Smad pathway. These findings indicate the ALK4-Smad pathway may promote ectopic lesion survival and development.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Aromatasa/metabolismo , Endometriosis/metabolismo , Proteína Smad4/metabolismo , Activinas , Adulto , Células Cultivadas , Activación Enzimática , Femenino , Humanos , Transducción de Señal
20.
Ying Yong Sheng Tai Xue Bao ; 27(2): 511-8, 2016 Feb.
Artículo en Chino | MEDLINE | ID: mdl-27396125

RESUMEN

A field experiment applying six rates of P fertilizer (P2O5, 0, 150, 225, 300, 375 and 450 kg . hm-2, respectively) was conducted to investigate the effects of P fertilization on dry matter accumulation (DMA), P uptake and accumulation (PUA) and P use efficiency (PUE) of trellis-cultivated melon. Results showed that, P application increased DMA and PUA, for 150 and 225 kg P2O5 . hm-2 treatments, being 19.9% and 26.3%, 23.0% and 26.3% higher than that in no P fertilizer treatment at fruiting stage. With plant growth, DMA and PUA of different organs and the whole plant gradually increased. DMA and PUA were mainly distributed in the leaves during the early stage of the growth and in the fruit during the latter stage. P application decreased the recovery efficiency of applied P (REP), agronomic efficiency of applied P (AEP) and partial factor productivity of applied P (PFP). At 150 kg . hm-2 P application rate, the maximum REP, AEP and PFP were 11.1%, 152.9 kg . kg-1 and 476.3 kg . kg-1, respectively. Compared with no P fertilizer treatment, melon yields of 150 and 225 kg P2O5 . hm2 treatments increased by 47.3% and 39.7%, respectively. In summary, the vining stage and fruit expanding stage were the key periods for P application in trellis-cultivated melon system. Based on synthesized economic yield and P fertilizer efficiency, the recommendation of P fertilizer for trellis-cultivated melon is 150-225 kg P2O5 . hm-2 under the climatic condition of the experimental area.


Asunto(s)
Cucurbitaceae/crecimiento & desarrollo , Fertilizantes , Fósforo/química , Biomasa , Frutas/crecimiento & desarrollo , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...