Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 84: 104266, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36126617

RESUMEN

BACKGROUND: Oxytocin (OXT) and corticotropin-releasing hormone (CRH) are both produced in hypothalamic paraventricular nucleus (PVN). Central CRH may cause depression-like symptoms, while peripheral higher OXT plasma levels were proposed to be a trait marker for bipolar disorder (BD). We aimed to investigate differential OXT and CRH expression in the PVN and their receptors in prefrontal cortex of major depressive disorder (MDD) and BD patients. In addition, we investigated mood-related changes by stimulating PVN-OXT in mice. METHODS: Quantitative immunocytochemistry and in situ hybridization were performed in the PVN for OXT and CRH on 6 BD and 6 BD-controls, 9 MDD and 9 MDD-controls. mRNA expressions of their receptors (OXTR, CRHR1 and CRHR2) were determined in anterior cingulate cortex and dorsolateral prefrontal cortex (DLPFC) of 30 BD and 34 BD-controls, and 24 MDD and 12 MDD-controls. PVN of 41 OXT-cre mice was short- or long-term activated by chemogenetics, and mood-related behavior was compared with 26 controls. FINDINGS: Significantly increased OXT-immunoreactivity (ir), OXT-mRNA in PVN and increased OXTR-mRNA in DLPFC, together with increased ratios of OXT-ir/CRH-ir and OXTR-mRNA/CRHR-mRNA were observed in BD, at least in male BD patients, but not in MDD patients. PVN-OXT stimulation induced depression-like behaviors in male mice, and mixed depression/mania-like behaviors in female mice in a time-dependent way. INTERPRETATION: Increased PVN-OXT and DLPFC-OXTR expression are characteristic for BD, at least for male BD patients. Stimulation of PVN-OXT neurons induced mood changes in mice, in a pattern different from BD. FUNDING: National Natural Science Foundation of China (81971268, 82101592).


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Animales , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Femenino , Masculino , Ratones , Oxitocina , ARN Mensajero/genética
2.
Transl Psychiatry ; 12(1): 275, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821008

RESUMEN

We investigated for the first time the proteomic profiles both in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) of major depressive disorder (MDD) and bipolar disorder (BD) patients. Cryostat sections of DLPFC and ACC of MDD and BD patients with their respective well-matched controls were used for study. Proteins were quantified by tandem mass tag and high-performance liquid chromatography-mass spectrometry system. Gene Ontology terms and functional cluster alteration were analyzed through bioinformatic analysis. Over 3000 proteins were accurately quantified, with more than 100 protein expressions identified as significantly changed in these two brain areas of MDD and BD patients as compared to their respective controls. These include OGDH, SDHA and COX5B in the DLPFC in MDD patients; PFN1, HSP90AA1 and PDCD6IP in the ACC of MDD patients; DBN1, DBNL and MYH9 in the DLPFC in BD patients. Impressively, depending on brain area and distinct diseases, the most notable change we found in the DLPFC of MDD was 'suppressed energy metabolism'; in the ACC of MDD it was 'suppressed tissue remodeling and suppressed immune response'; and in the DLPFC of BD it was differentiated 'suppressed tissue remodeling and suppressed neuronal projection'. In summary, there are distinct proteomic changes in different brain areas of the same mood disorder, and in the same brain area between MDD and BD patients, which strengthens the distinct pathogeneses and thus treatment targets.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Anciano , Giro del Cíngulo , Humanos , Imagen por Resonancia Magnética/métodos , Profilinas/metabolismo , Proteómica
3.
Psychoneuroendocrinology ; 117: 104680, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32387876

RESUMEN

BACKGROUND: Classic nuclear-initiated estrogen signaling stimulates corticotropin-releasing hormone (CRH) gene expression as a transcription factor. However, the possible mechanism by which membrane-initiated estrogen signaling (MIES) influences CRH expression remains unclear. There are indications that MIES may upregulate nitric oxide (NO) production through the phosphatidylinositol 3-hydroxy kinase (PI3K) and potentially through the mitogen-activated protein kinase (MAPK) pathway. OBJECTIVES: We investigated the effect of MIES-mediated kinase pathways on CRH expression with or without NO synthesis. METHOD: In SK-N-SH cell culture, estradiol-bovine serum albumin (E2-BSA) was used as the specific membrane estrogen receptor activator, with a specific NO donor, and/or inhibitors for NO synthase (NOS), PI3K, MAPK, protein kinase A (PKA), and protein kinase C (PKC). RESULTS: E2-BSA significantly increased NO and CRH levels in the medium and NOS1-mRNA levels in the cells. In addition, NO donor up-regulated CRH expression, while NOS-inhibitor down-regulated it. When the inhibitor of MAPK and/or the inhibitor of PI3K was added to the medium, only the latter appeared to significantly block the stimulating effect of E2-BSA on NO synthesis, and this was accompanied by an increased CRH expression in the medium. We further studied the effect of the MIES-PKC-mediated pathway on CRH expression, with or without NOS-inhibitor, while the MIES-PKA(-PI3K) pathway served as a control. We found that MIES-PKC upregulated CRH expression independent of NO synthesis. CONCLUSION: MIES can efficiently upregulate CRH expression via various intracellular kinase pathways and may thus be a crucial component in the stress response.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Estradiol/farmacología , Estrógenos/metabolismo , Regulación de la Expresión Génica/fisiología , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Quinasa C/metabolismo , Receptores de Estrógenos/metabolismo , Albúmina Sérica Bovina/farmacología , Transducción de Señal/fisiología , Células Cultivadas , Humanos
4.
Psychoneuroendocrinology ; 77: 56-62, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28024269

RESUMEN

A hyperactive hypothalamo-pituitary-adrenal (HPA) axis is a prominent feature in depression. It has been shown that androgens inhibit HPA activity and that estrogens stimulate it. We have therefore investigated, in human postmortem hypothalamus, whether depression features an increase in aromatase, which is the rate-limiting enzyme for the conversion of androgens to estrogens. In addition, we have tested the effect of an aromatase inhibitor on depression-like symptoms in a frequently used animal model for depression. At first, aromatase immunoreactivity (ir) was quantified in the central part of the hypothalamic paraventricular nucleus (PVN) of 10 major depressive disorder (MDD) patients and 10 well-matched control subjects. Subsequently an animal experimental study was performed using the chronic unpredictable mild stress (CUMS) rats as depression model. The effect of administration of 1,4,6-androstatriene-3,17-dione (ATD), an aromatase inhibitor, was investigated by silastic capsule implantation. In the postmortem study, the amount of PVN aromatase-ir decreased significantly in the MDD group compared to the controls (P=0.029). In the animal study, ATD was found to cause significantly increased testosterone (T) levels, both in plasma and in the hypothalamus. However, ATD administration did not show significant effects on the depression-like behaviors or plasma corticosterone levels in CUMS rats. Based on our observations in human postmortem material and the animal experiment, we have to conclude that alterations in aromatase in adulthood do not seem to play a major role in the pathogenesis of the symptoms of depression.


Asunto(s)
Aromatasa/metabolismo , Trastorno Depresivo Mayor/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Anciano , Anciano de 80 o más Años , Androstatrienos/farmacología , Animales , Inhibidores de la Aromatasa/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Ratas , Estrés Psicológico/metabolismo , Testosterona/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...