Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963411

RESUMEN

Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Regulación del Desarrollo de la Expresión Génica , MicroARNs , Factores de Transcripción , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , MicroARNs/metabolismo , MicroARNs/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas , Transcripción Genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Núcleo Celular/metabolismo
2.
Bioessays ; 46(4): e2300209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38488284

RESUMEN

The Myelin Regulator Factor (MYRF) is a master regulator governing myelin formation and maintenance in the central nervous system. The conservation of MYRF across metazoans and its broad tissue expression suggest it has functions extending beyond the well-established role in myelination. Loss of MYRF results in developmental lethality in both invertebrates and vertebrates, and MYRF haploinsufficiency in humans causes MYRF-related Cardiac Urogenital Syndrome, underscoring its importance in animal development; however, these mechanisms are largely unexplored. MYRF, an unconventional transcription factor, begins embedded in the membrane and undergoes intramolecular chaperone mediated trimerization, which triggers self-cleavage, allowing its N-terminal segment with an Ig-fold DNA-binding domain to enter the nucleus for transcriptional regulation. Recent research suggests developmental regulation of cleavage, yet the mechanisms remain enigmatic. While some parts of MYRF's structure have been elucidated, others remain obscure, leaving questions about how these motifs are linked to its intricate processing and function.


Asunto(s)
Vaina de Mielina , Factores de Transcripción , Animales , Humanos , Factores de Transcripción/metabolismo , Vaina de Mielina/metabolismo , Proteínas de la Membrana/metabolismo , Regulación de la Expresión Génica , Dominios Proteicos
3.
Cell Rep ; 42(10): 113246, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37831605

RESUMEN

Metastasis is the leading cause of high ovarian-cancer-related mortality worldwide. Three major processes constitute the whole metastatic cascade: invasion, intravasation, and extravasation. Tumor cells often reprogram their metabolism to gain advantages in proliferation and survival. However, whether and how those metabolic alterations contribute to the invasiveness of tumor cells has yet to be fully understood. Here we performed a genome-wide CRISPR-Cas9 screening to identify genes participating in tumor cell dissemination and revealed that PTGES3 acts as an invasion suppressor in ovarian cancer. Mechanistically, PTGES3 binds to phosphofructokinase, liver type (PFKL) and generates a local source of prostaglandin E2 (PGE2) to allosterically inhibit the enzymatic activity of PFKL. Repressed PFKL leads to downgraded glycolysis and the subsequent TCA cycle for glucose metabolism. However, ovarian cancer suppresses the expression of PTGES3 and disrupts the PTGES3-PGE2-PFKL inhibitory axis, leading to hyperactivation of glucose oxidation, eventually facilitating ovarian cancer cell motility and invasiveness.


Asunto(s)
Dinoprostona , Neoplasias Ováricas , Humanos , Femenino , Fosfofructoquinasas , Fosfofructoquinasa-1/genética , Hígado/metabolismo , Glucosa/metabolismo , Neoplasias Ováricas/patología , Proliferación Celular , Línea Celular Tumoral , Invasividad Neoplásica
4.
Elife ; 102021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33950834

RESUMEN

Neural circuits develop through a plastic phase orchestrated by genetic programs and environmental signals. We have identified a leucine-rich-repeat domain transmembrane protein PAN-1 as a factor required for synaptic rewiring in C. elegans. PAN-1 localizes on cell membrane and binds with MYRF, a membrane-bound transcription factor indispensable for promoting synaptic rewiring. Full-length MYRF was known to undergo self-cleavage on ER membrane and release its transcriptional N-terminal fragment in cultured cells. We surprisingly find that MYRF trafficking to cell membrane before cleavage is pivotal for C. elegans development and the timing of N-MYRF release coincides with the onset of synaptic rewiring. On cell membrane PAN-1 and MYRF interact with each other via their extracellular regions. Loss of PAN-1 abolishes MYRF cell membrane localization, consequently blocking myrf-dependent neuronal rewiring process. Thus, through interactions with a cooperating factor on the cell membrane, MYRF may link cell surface activities to transcriptional cascades required for development.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/química , Factores de Transcripción/metabolismo , Animales , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Células HEK293 , Humanos , Dominios Proteicos , Transporte de Proteínas , Sinapsis/fisiología , Factores de Transcripción/genética
5.
J Neurosci ; 38(46): 9829-9839, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30249802

RESUMEN

Myelin sheath formed by oligodendrocytes (OLs) is essential for the rapid propagation of action potentials in the vertebrate CNS. Myelin regulatory factor (MYRF) is one of the critical factors that control OL differentiation and myelin maintenance. Previous studies showed that MYRF is a membrane-bound transcription factor associated with the endoplasmic reticulum (ER). After self-cleavage, the N-fragment of MYRF is released from the ER and translocated into the nucleus where it functions as a transcription factor to activate myelin gene expression. At present, it remains unknown whether MYRF self-cleavage and functional activation can be regulated during OL differentiation. Here, we report that TMEM98, an ER-associated transmembrane protein, is capable of binding to the C-terminal of MYRF and inhibiting its self-cleavage and N-fragment nuclear translocation. In the developing CNS, TMEM98 is selectively expressed in early maturing OLs in mouse pups of either sex. Forced expression of TMEM98 in embryonic chicken spinal cord of either sex suppresses endogenous OL differentiation and MYRF-induced ectopic expression of myelin genes. These results suggest that TMEM98, through inhibiting the self-cleavage of MYRF, functions as a negative feedback regulator of MYRF in oligodendrocyte differentiation and myelination.SIGNIFICANCE STATEMENT MYRF protein is initially synthesized as an ER-associated membrane protein that undergoes autoproteolytic cleavage to release the N-fragment, which is then transported into the nucleus and activates the transcription of myelin genes. To date, the molecular mechanisms that regulate the self-cleavage and function of MYRF in regulating oligodendrocyte differentiation have remained unknown. In this study, we present the molecular and functional evidence that TMEM98 membrane protein physically interacts with MYRF in the ER and subsequently blocks its self-cleavage, N-terminal nuclear translocation, and functional activation of myelin gene expression. To our knowledge, this is the first report on the regulation of MYRF self-proteolytic activity and function by an interacting protein, providing new insights into the molecular regulation of OL differentiation and myelinogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de la Membrana/metabolismo , Oligodendroglía/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Pollos , Retículo Endoplásmico/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Vaina de Mielina/metabolismo , Unión Proteica/fisiología
6.
Curr Opin Neurobiol ; 48: 97-105, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29182952

RESUMEN

The ability of neurons to modify or remodel their synaptic connectivity is critical for the function of neural circuitry throughout the life of an animal. Understanding the mechanisms underlying neuronal structural changes is central to our knowledge of how the nervous system is shaped for complex behaviors and how it further adapts to developmental and environmental demands. Caenorhabditis elegans provides a powerful model for examining developmental processes and for discovering mechanisms controlling neural plasticity. Recent findings have identified conserved themes underlying neural plasticity in development and under environmental stress.


Asunto(s)
Conducta Animal/fisiología , Sistema Nervioso/citología , Sistema Nervioso/crecimiento & desarrollo , Neuronas/fisiología , Sinapsis/fisiología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mutación/genética , Neuroglía/fisiología
7.
G3 (Bethesda) ; 7(7): 2055-2063, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28468816

RESUMEN

Acetylcholine (ACh) receptors (AChR) regulate neural circuit activity in multiple contexts. In humans, mutations in ionotropic acetylcholine receptor (iAChR) genes can cause neurological disorders, including myasthenia gravis and epilepsy. In Caenorhabditis elegans, iAChRs play multiple roles in the locomotor circuit. The cholinergic motor neurons express an ACR-2-containing pentameric AChR (ACR-2R) comprised of ACR-2, ACR-3, ACR-12, UNC-38, and UNC-63 subunits. A gain-of-function mutation in the non-α subunit gene acr-2 [acr-2(gf)] causes defective locomotion as well as spontaneous convulsions. Previous studies of genetic suppressors of acr-2(gf) have provided insights into ACR-2R composition and assembly. Here, to further understand how the ACR-2R regulates neuronal activity, we expanded the suppressor screen for acr-2(gf)-induced convulsions. The majority of these suppressor mutations affect genes that play critical roles in synaptic transmission, including two novel mutations in the vesicular ACh transporter unc-17 In addition, we identified a role for a conserved major facilitator superfamily domain (MFSD) protein, mfsd-6, in regulating neural circuit activity. We further defined a role for the sphingosine (SPH) kinase (Sphk) sphk-1 in cholinergic neuron activity, independent of previously known signaling pathways. Overall, the genes identified in our study suggest that optimal modulation of synaptic activity is balanced by the differential activities of multiple pathways, and the novel alleles provide valuable reagents to further dissect neuronal mechanisms regulating the locomotor circuit.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Locomoción/genética , Mutación , Receptores Colinérgicos , Transmisión Sináptica/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas Colinérgicas/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo
8.
Dev Cell ; 41(2): 180-194.e7, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28441531

RESUMEN

Synaptic refinement is a critical step in nervous system maturation, requiring a carefully timed reorganization and refinement of neuronal connections. We have identified myrf-1 and myrf-2, two C. elegans homologs of Myrf family transcription factors, as key regulators of synaptic rewiring. MYRF-1 and its paralog MYRF-2 are functionally redundant specifically in synaptic rewiring. They co-exist in the same protein complex and act cooperatively to regulate synaptic rewiring. We find that the MYRF proteins localize to the ER membrane and that they are cleaved into active N-terminal fragments, which then translocate into the nucleus to drive synaptic rewiring. Overexpression of active forms of MYRF is sufficient to accelerate synaptic rewiring. MYRF-1 and MYRF-2 are the first genes identified to be indispensable for promoting synaptic rewiring in C. elegans. These findings reveal a molecular mechanism underlying synaptic rewiring and developmental circuit plasticity.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Retículo Endoplásmico/metabolismo , Plasticidad Neuronal/genética , Sinapsis/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/economía , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Proteínas de la Membrana/metabolismo
9.
Genes Dev ; 29(22): 2377-90, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26588990

RESUMEN

Alternative polyadenylation (APA) is widespread in neuronal development and activity-mediated neural plasticity. However, the underlying molecular mechanisms are largely unknown. We used systematic genetic studies and genome-wide surveys of the transcriptional landscape to identify a context-dependent regulatory pathway controlling APA in the Caenorhabditis elegans nervous system. Loss of function in ssup-72, a Ser5 phosphatase for the RNA polymerase II (Pol II) C-terminal domain (CTD), dampens transcription termination at a strong intronic polyadenylation site (PAS) in unc-44/ankyrin yet promotes termination at the weak intronic PAS of the MAP kinase dlk-1. A nuclear protein, SYDN-1, which regulates neuronal development, antagonizes the function of SSUP-72 and several nuclear polyadenylation factors. This regulatory pathway allows the production of a neuron-specific isoform of unc-44 and an inhibitory isoform of dlk-1. Dysregulation of the unc-44 and dlk-1 mRNA isoforms in sydn-1 mutants impairs neuronal development. Deleting the intronic PAS of unc-44 results in increased pre-mRNA processing of neuronal ankyrin and suppresses sydn-1 mutants. These results reveal a mechanism by which regulation of CTD phosphorylation controls coding region APA in the nervous system.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/crecimiento & desarrollo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Ancirinas/genética , Ancirinas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Mutación , Neuronas/enzimología , Fosfoproteínas Fosfatasas/genética , Poliadenilación , Unión Proteica
10.
J Neurosci ; 33(12): 5319-25, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23516296

RESUMEN

Excitatory acetylcholine motor neurons drive Caenorhabditis elegans locomotion. Coordinating the activation states of the backward-driving A and forward-driving B class motor neurons is critical for generating sinusoidal and directional locomotion. Here, we show by in vivo calcium imaging that expression of a hyperactive, somatodendritic ionotropic acetylcholine receptor ACR-2(gf) in A and B class motor neurons induces aberrant synchronous activity in both ventral- and dorsal-innervating B and A class motor neurons. Expression of ACR-2(gf) in either ventral- or dorsal-innervating B neurons is sufficient for triggering the aberrant synchrony that results in arrhythmic convulsions. Silencing of AVB, the premotor interneurons that innervate B motor neurons suppresses ACR-2(gf)-dependent convulsion; activating AVB by channelrhodopsin induces the onset of convulsion. These results support that the activity state of B motor neurons plays an instructive role for the coordination of motor circuit.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Neuronas Colinérgicas/fisiología , Vías Eferentes/citología , Vías Eferentes/fisiología , Neuronas Motoras/fisiología , Receptores Nicotínicos/fisiología , Acetilcolina/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Dendritas/fisiología , Expresión Génica/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Nicotínicos/genética , Convulsiones/genética , Convulsiones/fisiopatología
11.
Proc Natl Acad Sci U S A ; 109(19): 7499-504, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22532663

RESUMEN

We describe a method for light-inducible and tissue-selective cell ablation using a genetically encoded photosensitizer, miniSOG (mini singlet oxygen generator). miniSOG is a newly engineered fluorescent protein of 106 amino acids that generates singlet oxygen in quantum yield upon blue-light illumination. We transgenically expressed mitochondrially targeted miniSOG (mito-miniSOG) in Caenorhabditis elegans neurons. Upon blue-light illumination, mito-miniSOG causes rapid and effective death of neurons in a cell-autonomous manner without detectable damages to surrounding tissues. Neuronal death induced by mito-miniSOG appears to be independent of the caspase CED-3, but the clearance of the damaged cells partially depends on the phagocytic receptor CED-1, a homolog of human CD91. We show that neurons can be killed at different developmental stages. We further use this method to investigate the role of the premotor interneurons in regulating the convulsive behavior caused by a gain-of-function mutation in the neuronal acetylcholine receptor acr-2. Our findings support an instructive role for the interneuron AVB in controlling motor neuron activity and reveal an inhibitory effect of the backward premotor interneurons on the forward interneurons. In summary, the simple inducible cell ablation method reported here allows temporal and spatial control and will prove to be a useful tool in studying the function of specific cells within complex cellular contexts.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Flavoproteínas/metabolismo , Proteínas Luminiscentes/metabolismo , Neuronas/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Caspasas/genética , Caspasas/metabolismo , Muerte Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Flavoproteínas/genética , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/efectos de la radiación , Luz , Proteínas Luminiscentes/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Mitocondrias/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Neuronas Motoras/efectos de la radiación , Neuronas/citología , Neuronas/efectos de la radiación , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Oxígeno Singlete/metabolismo , Factores de Tiempo
12.
PLoS Biol ; 7(12): e1000265, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20027209

RESUMEN

In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three alpha-subunits, UNC-38, UNC-63 and ACR-12, and two non-alpha-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf) mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Locomoción , Neuronas Motoras/metabolismo , Contracción Muscular , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Datos de Secuencia Molecular , Mutación , Receptores Nicotínicos/genética , Transmisión Sináptica , Xenopus , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA