Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 260(Pt 1): 129544, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244739

RESUMEN

Inspired by iridescent color in natural creations, cellulose nanocrystal (CNC) photonic crystals artificially created by nanotechnology have great application prospects due to their potential to control light propagation in the linear and nonlinear regimes. One of the most important development directions of photonic crystals is the diversification of colors, usually by adjusting the pitch. However, few researchers notice the effect of polymer molecular weight and content on pitch regulation and the interaction between polymer and CNC liquid crystals. Polyethylene glycol (PEG) were used as polymers to regulate the pitch of CNC photonic crystals and investigate the changes in microstructure, crystal structure, thermal properties, and liquid crystal texture of the composites by changing the PEG content and molecular weight. Different photonic crystal construction systems show that when the molecular weight of PEG is 0.4 k, it can be filled between CNCs to regulate the pitch of photonic crystals, while when the molecular weight of PEG is 20 k, it cannot always be filled between CNCs in evaporation-induced self-assembly (EISA) process due to the depletion interaction, which cannot effectively regulate the pitch. This study reveals the relationship between PEG and CNC liquid crystals, which supports the development of photonic crystals and the pitch regulation.


Asunto(s)
Cristales Líquidos , Nanopartículas , Celulosa/química , Polietilenglicoles/química , Nanopartículas/química , Polímeros
2.
Carbohydr Polym ; 319: 121146, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567702

RESUMEN

Nanocellulose (NC) is the desired building block for novel biomaterials. The morphology of NC is one of the core parameters impacting the functionality and property of engineered functional materials. This work aims to reveal the relationship between the product morphology and sulfuric acid hydrolysis conditions (including acid concentration, temperature and time), and to realize morphological regulation of obtained NC. Three representative products were obtained from microcrystalline cellulose via sulfuric acid hydrolysis, which are cellulose nanocrystals with broad size distribution (W-CNC, 383.9 ± 131.7 nm in length, 6 ± 2.1 nm in height) obtained by 61 % H2SO4, 55 °C and 90 min, cellulose nanospheres (CNS, 61.3 ± 15.9 nm in diameter) obtained by 64 % H2SO4, 35 °C and 75 min, and CNC with narrow size distribution (N-CNC, 276.1 ± 28.7 nm in length, 4.1 ± 0.6 nm in height), obtained by 64 % H2SO4, 45 °C and 45 min. The results showed that the crystallographic form of W-CNC and N-CNC are cellulose I, while cellulose I and II coexist in CNS. Only W-CNC and N-CNC can form chiral nematic structures through evaporation-induced self-assembly strategy and reflected light with specific wavelengths. In addition, the formation mechanism of CNS with cellulose I/II was proposed, which provided a better understanding of NC morphology regulation.

3.
ChemSusChem ; 14(5): 1284-1294, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33403798

RESUMEN

As a new product of high-value utilization of lignin, lignin micro/nano particles (LMNPs) have attracted the attention of researchers due to their non-toxicity, corrosion-resistance, UV resistance, and other excellent characteristics and potential application value. This article outlined the main preparation methods of LMNPs at the current stage, summarized and compared them from three perspectives of preparation technology, final product state and product composition. Subsequently, based on the different focuses of the properties of LMNPs, their application research progress as fillers, UV blockers, drug delivery carriers, among others, were introduced. Then a concise analysis of the technical and economic assessment and life cycle assessment of LMNPs in the process of industrialization was made. Finally, the main problems at present and the future development directions were analyzed and prospected to provide references for the deep processing of forest resources and the development of bio-based nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...