Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38498523

RESUMEN

CULLIN (CUL) protein is a subtype of E3 ubiquitin ligase that is involved in a variety of biological processes and responses to stress in plants. In Uncaria rhynchophylla, the CUL gene family has not been identified and its role in plant development, stress response and secondary metabolite synthesis has not been studied. In this study, 12 UrCUL gene members all contained the typical N-terminal domain and C-terminal domain identified from the U. rhynchophylla genome and were classified into four subfamilies based on the phylogenetic relationship with CULs in Arabidopsis thaliana. They were unevenly distributed on eight chromosomes but had a similar structural composition in the same subfamily, indicating that they were relatively conserved and potentially had similar gene functions. An interspecific and intraspecific collinearity analysis showed that fragment duplication played an important role in the evolution of the CUL gene family. The analysis of the cis-acting elements suggests that the UrCULs may play an important role in various biological processes, including the abscisic acid (ABA) response. To investigate this hypothesis, we treated the roots of U. rhynchophylla tissue-cultured seedlings with ABA. The expression pattern analysis showed that all the UrCUL genes were widely expressed in roots with various expression patterns. The co-expression association analysis of the UrCULs and key enzyme genes in the terpenoid indole alkaloid (TIA) synthesis pathway revealed the complex expression patterns of 12 UrCUL genes and some key TIA enzyme genes, especially UrCUL1, UrCUL1-likeA, UrCUL2-likeA and UrCUL2-likeB, which might be involved in the biosynthesis of TIAs. The results showed that the UrCULs were involved in the response to ABA hormones, providing important information for elucidating the function of UrCULs in U. rhynchophylla. The mining of UrCULs in the whole genome of U. rhynchophylla provided new information for understanding the CUL gene and its function in plant secondary metabolites, growth and development.

2.
PLoS Negl Trop Dis ; 18(3): e0012003, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38452104

RESUMEN

BACKGROUND: Advanced schistosomiasis is the most serious outcome of infection and has a negative impact on both physical fitness and mental health of patients, the latter of which has long been overlooked. Therefore, we performed this systematic review and meta-analysis to estimate the overall prevalence of depressive symptoms, one of the most common mental problems, in patients with advanced schistosomiasis in China. METHODS: Six electronic databases were searched for studies reporting the prevalence of depressive symptoms in the targeted patients. Assessments were pooled using a fixed- or random-effects model based on heterogeneity test. Subgroup analyses were further performed and differences between/among groups were examined using the chi-squared test. The protocol had previously been registered in PROSPERO (CRD42023406708). RESULTS: A total of 11 studies with 1,673 participants were included. The pooled prevalence of depressive symptoms in advanced schistosomiasis in China was 62.01% (95% CI: 51.30% - 72.72%), with a significant heterogeneity among studies. Depressive symptoms were more prevalent in patients with complications and more than half of the patients suffered a mild- or moderate-level of depression. No publication bias was found, and sensitivity analysis showed a stable result. CONCLUSIONS: The overall prevalence of depressive symptoms in advanced schistosomiasis in China was high enough to warrant psychotherapeutic interventions, especially for patients with complications. This would greatly prevent or/and reduce depression and improve their quality of life.


Asunto(s)
Depresión , Calidad de Vida , Humanos , Depresión/epidemiología , Prevalencia , Pacientes , China/epidemiología
3.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474209

RESUMEN

Salinization of cultivated soils may result in either high salt levels or alkaline conditions, both of which stress crops and reduce performance. We sampled genotypes included in the Northeast China soybean germplasm population (NECSGP) to identify possible genes that affect tolerance to alkaline soil conditions. In this study, 361 soybean accessions collected in Northeast China were tested under 220 mM NaHCO3:Na2CO3 = 9:1 (pH = 9.8) to evaluate the alkali-tolerance (ATI) at the seedling stage in Mudanjiang, Heilongjiang, China. The restricted two-stage multi-locus model genome-wide association study (RTM-GWAS) with gene-allele sequences as markers (6503 GASMs) based on simplified genome resequencing (RAD-sequencing) was accomplished. From this analysis, 132 main effect candidate genes with 359 alleles and 35 Gene × Environment genes with 103 alleles were identified, explaining 90.93% and 2.80% of the seedling alkali-tolerance phenotypic variation, respectively. Genetic variability of ATI in NECSGP was observed primarily within subpopulations, especially in ecoregion B, from which 80% of ATI-tolerant accessions were screened out. The biological functions of 132 candidate genes were classified into eight functional categories (defense response, substance transport, regulation, metabolism-related, substance synthesis, biological process, plant development, and unknown function). From the ATI gene-allele system, six key genes-alleles were identified as starting points for further study on understanding the ATI gene network.


Asunto(s)
Estudio de Asociación del Genoma Completo , Plantones , Alelos , Plantones/genética , Sitios de Carácter Cuantitativo , Glycine max , Polimorfismo de Nucleótido Simple , Suelo , China
4.
Reprod Sci ; 31(6): 1496-1507, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38347381

RESUMEN

Endometriosis, a common chronic gynecological disease, refers to the presence and proliferation of endometrial tissue in locations other than the uterine cavity. Approximately 6 to 10% of the population of women of childbearing age are known to have endometriosis; the most common clinical signs are pelvic pain and infertility. Although endometriosis is a benign disease, it exhibits some typical features of malignant tumors, such as proliferation, invasion, metastasis, and recurrence. Endometriosis is considered a chronic, inflammatory, and estrogen-dependent disease, and multiple factors contribute to its occurrence and development. In recent years, increasing attention has been given to the role of apoptosis in the pathogenesis of this disease. Some researchers believe that spontaneous apoptosis of the endometrium is critical in maintaining its normal structure and function, and abnormal apoptosis can promote the occurrence and development of endometriosis. Inflammation is another likely process in the pathogenesis of endometriosis. Inflammation mediates the adhesion, proliferation, differentiation, and invasion of ectopic lesions of endometriosis, primarily by regulating the function of immune cells and increasing the level of proinflammatory cytokines in body fluids. The ultimate initiators of apoptosis and inflammatory cell death (pyroptosis) are the caspase family proteases. In this article, we review the progress in recent years in caspase function as well as the possible role of these enzymes in the pathogenesis of endometriosis, indicating potential treatment strategies.


Asunto(s)
Apoptosis , Caspasas , Endometriosis , Endometriosis/enzimología , Endometriosis/patología , Endometriosis/metabolismo , Humanos , Femenino , Caspasas/metabolismo , Animales , Endometrio/patología , Endometrio/enzimología , Endometrio/metabolismo
5.
IEEE Trans Pattern Anal Mach Intell ; 46(2): 729-748, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37878432

RESUMEN

Blockchain data mining has the potential to reveal the operational status and behavioral patterns of anonymous participants in blockchain systems, thus providing valuable insights into system operation and participant behavior. However, traditional blockchain analysis methods suffer from the problems of being unable to handle the data due to its large volume and complex structure. With powerful computing and analysis capabilities, graph learning can solve the current problems through handling each node's features and linkage relationships separately and exploring the implicit properties of data from a graph perspective. This paper systematically reviews the blockchain data mining tasks based on graph learning approaches. First, we investigate the blockchain data acquisition method, integrate the currently available data analysis tools, and divide the sampling method into rule-based and cluster-based techniques. Second, we classify the graph construction into transaction-based blockchain and account-based methods, and comprehensively analyze the existing blockchain feature extraction methods. Third, we compare the existing graph learning algorithms on blockchain and classify them into traditional machine learning-based, graph representation-based, and graph deep learning-based methods. Finally, we propose future research directions and open issues which are promising to address.

6.
Reprod Biol Endocrinol ; 21(1): 115, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053145

RESUMEN

BACKGROUND: The 25-hydroxyvitamin D3 (25 (OH) D3) is crucial for follicular development. This study aimed to investigate the relationship between the level of 25 (OH) D3 in endometriosis patients, pregnancy outcomes of in vitro fertilization (IVF), and the underlying mechanism. METHODS: The 25 (OH) D3 levels in serum and follicular Fluid (FF) samples were detected using enzyme-linked immunosorbent assay (ELISA). Clinical features and pregnancy outcomes of endometriosis patients were also compared between the deficient group (< 20 ug/ml) and the adequate group (≥ 20 ug/ml). The effects of 25 (OH) D3 on the proliferation and cell cycle of human ovarian granulosa cells were respectively detected by CCK-8 assay and flow cytometry (FCM). The differentially expressed genes (DEGs) in granulosa cells of endometriosis and tubal infertility patients were screened from GEO database. The effects of 25 (OH) D3 on the expressions of CDKN2D, PPARA, TGFB2 and THBD were determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. RESULTS: The levels of 25 (OH) D3 in serum and FF samples were decreased in endometriosis patients. The deficient group had fewer embryos that can be transferred, lower quality embryos and lower clinical pregnancy rates. Adequate 25 (OH) D3 levels in FF samples was a protective factor for live birth outcome in endometriosis patients. 25 (OH) D3 enhanced the proliferation capacity of granulosa cells (the concentration of 10 nM was the most significant) and increased the proportion of G2M + S phase cells. The expression of CDKN2D was decreased and TGFB2 and THBD were significantly upregulated. CONCLUSIONS: 25 (OH) D3 deficiency may be associated with poor IVF pregnancy outcomes in endometriosis patients. 25 (OH) D3 promotes ovarian granulosa cell proliferation by promoting the ability of cells to divide, and may accelerate cell cycle progression by up-regulating THBD and down-regulating CDKN2D expression.


Asunto(s)
Endometriosis , Embarazo , Femenino , Humanos , Endometriosis/metabolismo , Resultado del Embarazo , Calcifediol/metabolismo , Fase S , Fertilización In Vitro , Proliferación Celular/genética , Líquido Folicular/metabolismo , Células de la Granulosa/metabolismo
7.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895010

RESUMEN

Ovarian aging and disease-related decline in fertility are challenging medical and economic issues with an increasing prevalence. Polyamines are a class of polycationic alkylamines widely distributed in mammals. They are small molecules essential for cell growth and development. Polyamines alleviate ovarian aging through various biological processes, including reproductive hormone synthesis, cell metabolism, programmed cell death, etc. However, an abnormal increase in polyamine levels can lead to ovarian damage and promote the development of ovarian disease. Therefore, polyamines have long been considered potential therapeutic targets for aging and disease, but their regulatory roles in the ovary deserve further investigation. This review discusses the mechanisms by which polyamines ameliorate human ovarian aging and disease through different biological processes, such as autophagy and oxidative stress, to develop safe and effective polyamine targeted therapy strategies for ovarian aging and the diseases.


Asunto(s)
Ovario , Poliaminas , Animales , Femenino , Humanos , Poliaminas/metabolismo , Ovario/metabolismo , Envejecimiento/metabolismo , Reproducción , Fertilidad , Mamíferos/metabolismo
8.
Plant Physiol ; 193(2): 1244-1262, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37427874

RESUMEN

Wurfbainia longiligularis and Wurfbainia villosa are both rich in volatile terpenoids and are 2 primary plant sources of Fructus Amomi used for curing gastrointestinal diseases. Metabolomic profiling has demonstrated that bornyl diphosphate (BPP)-related terpenoids are more abundant in the W. villosa seeds and have a wider tissue distribution in W. longiligularis. To explore the genetic mechanisms underlying the volatile terpenoid divergence, a high-quality chromosome-level genome of W. longiligularis (2.29 Gb, contig N50 of 80.39 Mb) was assembled. Functional characterization of 17 terpene synthases (WlTPSs) revealed that WlBPPS, along with WlTPS 24/26/28 with bornyl diphosphate synthase (BPPS) activity, contributes to the wider tissue distribution of BPP-related terpenoids in W. longiligularis compared to W. villosa. Furthermore, transgenic Nicotiana tabacum showed that the GCN4-motif element positively regulates seed expression of WvBPPS and thus promotes the enrichment of BPP-related terpenoids in W. villosa seeds. Systematic identification and analysis of candidate TPS in 29 monocot plants from 16 families indicated that substantial expansion of TPS-a and TPS-b subfamily genes in Zingiberaceae may have driven increased diversity and production of volatile terpenoids. Evolutionary analysis and functional identification of BPPS genes showed that BPP-related terpenoids may be distributed only in the Zingiberaceae of monocot plants. This research provides valuable genomic resources for breeding and improving Fructus Amomi with medicinal and edible value and sheds light on the evolution of terpenoid biosynthesis in Zingiberaceae.


Asunto(s)
Transferasas Alquil y Aril , Terpenos , Humanos , Terpenos/metabolismo , Difosfatos , Fitomejoramiento , Frutas/genética , Frutas/metabolismo , Plantas/metabolismo , Transferasas Alquil y Aril/genética
9.
Bioprocess Biosyst Eng ; 46(7): 1045-1052, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37253987

RESUMEN

Echinocandin B (ECB) is the key precursor compound of the antifungal drug Anidulafungin. The effects of the five precursor amino acids on ECB biosynthesis were firstly investigated. It showed that although L-threonine was a main compound of the hexapeptide scaffold of ECB, exogenous addition of L-threonine had no significant effect on the increase of ECB fermentation titer. Meanwhile, the ECB fermentation titer with methyl oleate showed two times higher than that of the other carbon sources. Transcription level analysis of the key genes for ECB biosynthesis indicated that the gene an655543 related to L-threonine biosynthesis showed higher value during the fermentation process, therefore, the exogenous addition of L-threonine had no obvious affection. Furthermore, it indicated that the transcription level of gene ecdA might be the main restriction factor for the ECB biosynthesis. The study provided the research foundation for the modification of the ECB producing strains in the following work.


Asunto(s)
Antifúngicos , Equinocandinas , Fermentación , Equinocandinas/genética , Equinocandinas/química , Antifúngicos/farmacología , Antifúngicos/química
10.
PeerJ ; 11: e15212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090108

RESUMEN

The auxin/indole-3-acetic acid (Aux/IAA) gene family serves as a principal group of genes responsible for modulating plant growth and development through the auxin signaling pathway. Despite the significance of this gene family, the identification and characterization of members within the well-known Chinese medicinal herb Salvia miltiorrhiza (S. miltiorrhiza) have not been thoroughly investigated. In this study, we employed bioinformatics methods to identify 23 Aux/IAA genes within the genome of S. miltiorrhiza. These genes were classified into typical IAA and atypical IAA based on their domain structure. Our analysis of the promoter regions revealed that the expression of these genes is regulated not only by auxins, but also by other hormones and environmental factors. Furthermore, we found that the expression patterns of these genes varied across various tissues of S. miltiorrhiza. While our initial hypothesis suggested that the primary function of these genes was the interaction between SmIAA and ARF, gene co-expression network analysis revealed that they are also influenced by various other transcription factors, such as WRKY and ERF. The findings establish a sturdy basis for future investigations into the function of the Aux/IAA gene family and exhibit promising prospects for enhancing the genetics of this medicinal flora and its associated species.


Asunto(s)
Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Proteínas de Plantas/genética , Ácidos Indolacéticos/farmacología , Genoma de Planta/genética , Desarrollo de la Planta
11.
J Plant Physiol ; 285: 153983, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37116390

RESUMEN

In view of the nephrotoxicity, hepatotoxicity, and carcinogenicity of aristolochic acids (AAs), the removal of AAs from plants becomes an urgent priority for ensuring the safety of Aristolochia herbal materials. In this study, based on the root-predominant distribution of aristolochic acid I (AAI) in Aristolochia debilis, transcriptome sequencing, in combination with phylogenetic analyses, and gene expression pattern analysis together provided five candidate genes for investigating AAI biosynthesis. Comprehensive in vitro and in vivo enzymatic assays revealed that Ab6OMT1 (6-O-methyltransferase) and AbNMT1 (N-methyltransferase) exhibit promiscuity in substrate recognition, and they could act in a cooperative fashion to achieve conversion of norlaudanosoline, a predicted intermediate in AAI biosynthetic route, into 3'-hydroxy-N-methylcoclaurine through two different methylation reaction sequences. These results shed light on the molecular basis for AAI biosynthesis in Aristolochia herbs. More importantly, Ab6OMT1 and AbNMT1 may be employed as targets for the metabolic engineering of AAI biosynthesis to produce AAs-free Aristolochia herbal materials.


Asunto(s)
Aristolochia , Aristolochia/genética , Aristolochia/química , Tetrahidropapaverolina , Metiltransferasas/genética , Filogenia , Plantas
12.
Front Plant Sci ; 14: 1165384, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056489

RESUMEN

Soybean production is severely hampered by saline-alkaline stress caused by saline-alkalization. Plants have aldehydrogenase (ALDH) family members that convert reactive aldehydes to carboxylic acids to remove active aldehyde molecules. However, little is known about the increased saline-alkali tolerance caused by the ALDH function in soybean. Here, we introduced a previously identified ALDH coding gene AhALDH3H1 from Arachis hypogaea into the soybean genome to investigate its critical role in response to saline-alkali stress. Transgenic soybean with increased aldehyde dehydrogenase activity showed significant tolerance to saline-alkali stress. It reduced malondialdehyde (MDA) content compared to its receptor, suggesting that over-expression of AhALDH3H1 accelerated soybean tolerance to saline-alkali stress by increasing aldehyde dehydrogenase activity, which is responsible for scavenging toxic MDA. To further analyze the inner mechanisms that allow transgenic plants to tolerate saline-alkali stress, we sequenced the transcriptome and metabolome of P3 (wild type, WT) and transgenic lines which were separately treated with water and a saline-alkali solution. When subjected to saline-alkali stress, the integrated analysis of the transcriptome and metabolome suggested that several genes related to cell wall structure crucial for preserving cell wall extensibility and plasticity were largely responsible for restoring homeostasis within the transgenic cells compared to WT. Metabolites, including both necessary ingredients for cell wall genesis and harmful production produced during the saline-alkali stress response, could be transported efficiently with the help of the ABC transporter, reducing the negative effects of saline-alkali stress. These findings suggest that introducing AhALDH3H1 increases transgenic soybean tolerance to saline-alkali stress may through cell wall structure maintenance and metabolites transport.

13.
Front Microbiol ; 14: 1292984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38293560

RESUMEN

Introduction: Intestinal health is very important to the health of livestock and poultry, and is even a major determining factor in the performance of livestock and poultry production. Spermidine is a type of polyamine that is commonly found in a variety of foods, and can resist oxidative stress, promote cell proliferation and regulate intestinal flora. Methods: In this study, we explored the effects of spermidine on intestinal health under physiological states or oxidative stress conditions by irrigation with spermidine and intraperitoneal injection of 3-Nitropropionic acid (3-NPA) in Sichuan white goose. Results and discussion: Our results showed that spermidine could increase the ratio of intestinal villus to crypt and improve intestinal morphology. In addition, spermidine can also reduce malondialdehyde (MDA) accumulation caused by 3-NPA by increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) enzyme activity, thus alleviating intestinal damage. Furthermore, spermidine can regulate intestinal digestive enzyme activities and affect intestinal digestion and absorption ability. Spermidine can also promote an increase in intestinal microbial diversity and abundance and alleviate the change of microflora structure caused by 3-NPA. In conclusion, spermidine promotes the production of beneficial intestinal metabolites such as Wikstromol, Alpha-bisabolol and AS 1-5, thus improving the level of intestinal health. Taken together, these results indicate that spermidine can improve intestinal health by improving intestinal morphology, increasing antioxidant capacity and regulating intestinal flora structure.

14.
J Nat Prod ; 85(5): 1324-1331, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35574837

RESUMEN

A phenazine-polyketide hybrid compound, nexphenazine A (1), was isolated from Streptomyces sp. KIB-H483. The bioinformatic analysis of the draft genome of the producing strain and gene inactivation experiments revealed that the biosynthesis of 1 involves a phenazine-polyketide hybrid gene cluster. The abolished production of 1 as well as the accumulation of shunt metabolites 4-7 in mutant strain ΔnpzI revealed the key role of the npzI gene, which encodes an NAD(P)H-dependent ketoreductase, in nexphenazine biosynthesis. The structures and absolute configurations of the isolated intermediates were established on the basis of spectroscopic data analysis, single-crystal X-ray diffraction, chiral chromatography, and chemical conversion experiments. NpzI exhibited stereochemical selectivity in reducing the carbonyl group of 4. Nexphenazine biosynthesis is proposed to involve a condensation of the carboxyl group of phenazine with one molecule of methylmalonyl-CoA by a type I PKS, followed by a ketone reduction by NpzI and an unknown methylation reaction.


Asunto(s)
Policétidos , Streptomyces , Familia de Multigenes , Fenazinas/metabolismo , Policétidos/metabolismo , Streptomyces/genética
15.
Front Psychol ; 12: 647443, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220618

RESUMEN

Previous studies have demonstrated that individuals process information related to themselves or a high reward quickly and have referred to this as self-bias or reward-bias. However, no previous study has presented self- and reward-bias simultaneously. The present study investigated perceptual processing using the associated learning paradigm when both self and reward were prioritized (condition of double salience) as well as when only self or reward was prioritized (condition of single salience). The present study established these two conditions by manipulating self-relevance (self vs. stranger in Experiment 1; self vs. friend in Experiment 2). The results showed that (1) when the self was pitted against a stranger and received a high or low reward, perceptual processing of the participants mainly involved self-bias (Experiment 1); (2) when the self was pitted against a friend, perceptual processing involved both self-bias and reward-bias (Experiment 2). The study revealed a complex relationship between self- and reward-bias, which depends on the degree of affinity between oneself and others.

16.
Cancer Cell Int ; 21(1): 74, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33494783

RESUMEN

BACKGROUND: Lung cancer is one of the important health threats worldwide, of which 5-year survival rate is less than 15%. Non-small-cell lung cancer (NSCLC) accounts for about 80% of all lung cancer with high metastasis and mortality. METHODS: Cisplatin loaded multiwalled carbon nanotubes (Pt-MWNTS) were synthesized and used to evaluate the anticancer effect in our study. The NSCLC cell lines A549 (cisplatin sensitive) and A549/DDP (cisplatin resistant) were used in our in vitro assays. MTT was used to determine Cancer cells viability and invasion were measured by MTT assay and Transwell assay, respectively. Apoptosis and epithelial-mesenchymal transition related marker proteins were measured by western blot. The in vivo anti-cancer effect of Pt-MWNTs were performed in male BALB/c nude mice (4-week old). RESULTS: Pt-MWNTS were synthesized and characterized by X-ray diffraction, Raman, FT-IR spectroscopy and scan electron microscopy. No significant cytotoxicity of MWNTS was detected in both A549/DDP and A549 cell lines. However, Pt-MWNTS showed a stronger inhibition effect on cell growth than free cisplatin, especially on A549/DDP. We found Pt-MWNTS showed higher intracellular accumulation of cisplatin in A549/DDP cells than free cisplatin and resulted in enhanced the percent of apoptotic cells. Western blot showed that application of Pt-MWNTS can significantly upregulate the expression level of Bax, Bim, Bid, Caspase-3 and Caspase-9 while downregulate the expression level of Bcl-2, compared with free cisplatin. Moreover, the expression level of mesenchymal markers like Vimentin and N-cadherin was more efficiently reduced by Pt-MWNTS treatment in A549/DDP cells than free cisplatin. In vivo study in nude mice proved that Pt-MWNTS more effectively inhibited tumorigenesis compared with cisplatin, although both of them had no significant effect on body weight. CONCLUSION: Pt-MWNT reverses the drug resistance in the A549/DDP cell line, underlying its possibility of treating NSCLC with cisplatin resistance.

17.
Mol Genet Genomic Med ; 7(6): e662, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30972968

RESUMEN

BACKGROUND: Osteoarthritis (OA) is usually recognized to have a genetic factor, and in our study, we performed a case-control study to analyze the association between 14 single nucleotide polymorphisms (SNPs) in OPG and the risk of knee OA in a Chinese Han population. METHODS: Fourteen OPG SNPs were assayed using MassARRAY in 393 patients clinically and radiographically diagnosed with knee OA and in 500 controls. Allelic and genotypic frequencies were compared between the groups. Logistic regression adjusting for age and gender was used to estimate risk associations between specific genotypes and knee OA by computing odds ratios (ORs) and 95% confidence intervals (95% CIs). RESULTS: We found that the minor alleles of six SNPs in OPG were associated with an increased or decreased risk of knee OA in the allelic model analysis. In the genetic model analysis, we found that rs1905786, rs1032128, rs3134058, rs11573828, rs11573849, rs3134056, and rs1564861 were associated with an increased or decreased risk of knee OA before adjusted by sex and age. And after adjustment, three SNPs (rs1485286, rs1905786, and rs1032128) were identified to have a negative effect on knee OA. CONCLUSION: Our results verify that genetic variants of OPG contribute to knee OA susceptibility in the population of northern China. These genetic associations may identify individuals at a particularly high risk of developing knee OA.


Asunto(s)
Osteoartritis de la Rodilla/genética , Osteoprotegerina/genética , Anciano , Alelos , Pueblo Asiatico/genética , Estudios de Casos y Controles , China , Femenino , Frecuencia de los Genes/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Osteoprotegerina/metabolismo , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
18.
Mol Genet Genomic Med ; 7(2): e00519, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30548828

RESUMEN

BACKGROUND: Osteonecrosis of the femoral head (ONFH) is a refractory disease which frequently occurs in young and middle-aged people. Recent studies indicated that MMP-14 played an important role in the development of chondrocytes, metabolism of osteoblasts as well as fate decision of hypertrophic chondrocytes. The aim of this study was to investigate the association between polymorphisms of MMP-14 and steroid-induced osteonecrosis of the femoral head in the Chinese population. METHODS: We selected 7 SNPs (rs3751488, rs1003349, rs1042703, rs2236302, rs1042704, rs2236303, and rs2236304) on gene MMP-14. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using the chi-squared test, genetic model analysis, haplotype analysis, and stratification analysis. RESULTS: We discovered that the genotype "G/G" of rs2236302 was associated with ONFH risk in the MMP-14 in the codominant model (OR = 8.62, 95% CI = 1.07-69.46, p = 0.038) and recessive model (OR = 8.86, 95% CI = 1.10-71.31, p = 0.013). CONCLUSIONS: We have confirmed that the susceptive SNPs (rs2236302) of MMP-14 from the MMPs/TIMPs system exhibit a significant association with increased risk of steroid-induced ONFH in the population of northern China.


Asunto(s)
Necrosis de la Cabeza Femoral/genética , Metaloproteinasa 14 de la Matriz/genética , Polimorfismo de Nucleótido Simple , Adulto , Estudios de Casos y Controles , China , Femenino , Necrosis de la Cabeza Femoral/etiología , Humanos , Masculino , Persona de Mediana Edad , Esteroides/efectos adversos
19.
Drug Des Devel Ther ; 13: 4275-4290, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31908414

RESUMEN

PURPOSE: Silicosis is an occupational disease caused by inhalation of silica and there are no effective drugs to treat this disease. Tanshinone IIA (Tan IIA), a traditional natural component, has been reported to possess anti-inflammatory, antioxidant, and anti-fibrotic properties. The current study's purpose was to examine Tan IIA's protective effects against silica-induced pulmonary fibrosis and to explore the underlying mechanisms. METHODS: 48 male SD rats were randomly divided into four groups (n=12): i) Control group; ii) Silicosis group; iii) Tan IIA group; iv) Silicosis +Tan IIA group. Two days after modeling, the rats of Tan IIA group and Silicosis +Tan IIA group were given intraperitoneal administration 25 mg/kg/d Tan IIA for 40 days. Then, the four groups of rats were sacrificed and the lung inflammatory responses were measured by ELISA, lung damage and fibrosis were analyzed by hematoxylin and eosin (H&E) staining and Masson staining, the expression levels of collagen I, fibronectin and α-smooth muscle actin (α-SMA) were measured by immunohistochemistry. The markers of oxidative stress were measured by commercial kits, and the activity of the TGF-ß1/Smad and NOX4, Nrf2/ARE signaling pathways were measured by RT-PCR and Western blotting. RESULTS: The silica-induced pulmonary inflammtory responses, structural damage and fibrosis were significantly attenuated by Tan IIA treatment. In addition, treatment with Tan IIA decreased collagen I, fibronectin and α-SMA expression, and inhibited TGF-ß1/Smad signaling in the lung tissue. The upregulated levels of oxidative stress markers in silicosis rats were also markedly restored following Tan IIA treatment. Furthermore, treatment with Tan IIA reduced NOX4 expression and enhanced activation of the Nrf2/ARE pathway in the lung tissue of silicosis rats. CONCLUSION: These findings suggest that Tan IIA may protect lung from silica damage via the suppression of TGF-ß1/Smad signaling, inhibition of NOX4 expression and activation of the Nrf2/ARE pathway.


Asunto(s)
Abietanos/farmacología , Modelos Animales de Enfermedad , Sustancias Protectoras/farmacología , Silicosis/prevención & control , Abietanos/administración & dosificación , Animales , Elementos de Respuesta Antioxidante/efectos de los fármacos , Inyecciones Intraperitoneales , Masculino , NADPH Oxidasa 4/antagonistas & inhibidores , NADPH Oxidasa 4/metabolismo , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , Sustancias Protectoras/administración & dosificación , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Dióxido de Silicio/efectos adversos , Silicosis/metabolismo , Proteínas Smad/antagonistas & inhibidores , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo
20.
Oncotarget ; 8(47): 82835-82841, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29137306

RESUMEN

Non-traumatic osteonecrosis of femoral head (ONFH) is an orthopedic refractory disease with escalating morbidity in Chinese Han population. In our case-control study, we examined eight previously identified MMP9 single-nucleotide polymorphisms (SNPs) in 585 non-traumatic ONFH patients and 507 healthy individuals from northern China to determine whether these SNPs associated with the risk of developing non-traumatic ONFH. Genetic model and haplotype analyses were used to evaluate the association between SNPs and non-traumatic ONFH. MMP9 rs2274755 (OR, 0.740; 95% CI, 0.578-0.949; p = 0.017) was associated with a reduced risk of non-traumatic ONFH. After adjusting for age and gender, the logistic regression results showed that rs2274755 associated with a lower risk of non-traumatic ONFH in the dominant (OR=0.71, 95% CI: 0.54-0.94, p=0.016), overdominant (OR=0.73, 95% CI: 0.55-0.96, p=0.026) and log-additive (OR=0.74740; 95% CI, 0.578-0.949; p=0.017) models. In addition, the "TGC" haplotype of rs2274755 was associated with a 0.79-fold decrease in risk while the "CTC" haplotype associated with a 0.65-fold decrease risk of the non-traumatic ONFH. These results provide evidence that the MMP9 SNP at the rs2274755 locus is associated with a decreased risk of non-traumatic ONFH in a Chinese Han population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...