Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 456: 131681, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245371

RESUMEN

Heavy metals (HMs) contamination poses a serious threat to soil health. However, the rhizosphere effect of native pioneer plants on the soil ecosystem remains unclear. Herein, how the rhizosphere (Rumex acetosa L.) influenced the process of HMs threatening soil micro-ecology was investigated by coupling various fractions of HMs, soil microorganisms and soil metabolism. The rhizosphere effect alleviated the HMs' stress by absorbing and reducing HMs' direct bioavailability, and the accumulation of ammonium nitrogen increased in the rhizosphere soil. Meanwhile, severe HMs contamination covered the rhizosphere effect on the richness, diversity, structure and predicted function pathways of soil bacterial community, but the relative abundance of Gemmatimonadota decreased and Verrucomicrobiota increased. The content of total HMs and physicochemical properties played a more important role than rhizosphere effect in shaping soil bacterial community. Furthermore, As was observed to have a more significant impact compared to Sb. Moreover, plant roots improved the stability of bacterial co-occurrence network, and significantly changed the critical genera. The process influenced bacterial life activity and nutrient cycling in soil, and the conclusion was further supported by the significant difference in metabolic profiles. This study illustrated that in Sb/As co-contaminated area, rhizosphere effect significantly changed soil HMs content and fraction, soil properties, and microbial community and metabolic profiles.


Asunto(s)
Metales Pesados , Microbiota , Rumex , Contaminantes del Suelo , Suelo/química , Rumex/metabolismo , Metales Pesados/análisis , Bacterias/metabolismo , Plantas/metabolismo , Metaboloma , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
2.
Ecotoxicol Environ Saf ; 251: 114495, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36640572

RESUMEN

Heavy metal (HM) is noxious element that cannot be biodegraded, thus accumulating in the environment and posing a serious threat to the ecology. Plant phylloplane harbors diverse microbial communities that profoundly influence ecosystem functioning and host health. With more HM accumulating around smelters, native plants and microbes in various habitats tend to suffer from HM. However, the response of phylloplane bacteria of native plants to HM remains unclear. Thus, this study aimed to explain the response of Tamarix ramosissima, a phylloplane bacterial community to HM as well as the effect of the process on host growth in situ by investigating the potential source of HM and bacterial community shift. Results showed that, in most cases, the contaminated site with high HM level caused more accumulation of HM in phylloplane and leaves. Moreover, HM in the phylloplane was not from the internal transport of the plant but it could be due to the wind action or rains. Bacteria in phylloplane may have come from the soil due to their strong positive correlation with corresponding soil at the genus level. High HM level inhibited the relative abundance of dominant bacteria, increased the diversity and species richness of bacterial community in phylloplane, and induced more special bacteria to maintain higher productivity of the host plant, for which, Cu and Pb were the major contributors. Meanwhile, bacteria in phylloplane showed a universal positive correlation in the co-occurrence network, which showed less stability than that in corresponding soil in the smelting region, and it is helpful to regulate the growth of plants more rapidly. Nearly 25% of KEGG pathways were modulated by high HM level and bacterial function tended to stabilize HM to avoid the potential process of leaf absorption. The study illustrated that HM in phylloplane played an important role in shaping the bacterial community of phylloplane as compared to HM in leaves or phyllosphere, and the resulting increase of diversity and richness of bacterial community and special bacteria further maintained the growth of the host plant suffering from HM stress.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Tamaricaceae , Cadmio/metabolismo , Plomo/metabolismo , Tamaricaceae/metabolismo , Ecosistema , Metales Pesados/análisis , Bacterias/metabolismo , Suelo/química , Plantas/metabolismo , Zinc/análisis , Contaminantes del Suelo/análisis
3.
J Hazard Mater ; 438: 129469, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35820335

RESUMEN

Heavy metals (HMs) contamination around smelters poses serious stress to soil microbiome. However, the co-effect of multiple HMs and native vegetation rhizosphere on the soil ecosystem remains unclear. Herein, effects of high HMs level and the rhizosphere (Tamarix ramosissima) on soil bacterial community structure and metabolic profiles in sierozem were analyzed by coupling high-throughput sequencing and soil metabolomics. Plant roots alleviated the threat of HMs by absorbing and stabilizing them in soil. High HMs level decreased the richness and diversity of soil bacterial community and increased numbers of special bacteria. Plant roots changed the contribution of HMs species shaping the bacterial community. Cd and Zn were the main contributors to bacterial distribution in non-rhizosphere soil, however, Pb and Cu became the most important HMs in rhizosphere soil. HMs induced more dominant metal-tolerant bacteria in non-rhizosphere than rhizosphere soil. Meanwhile, critical metabolites varied by rhizosphere in co-occurrence networks. Moreover, the same HMs-tolerant bacteria were regulated by different metabolites, e.g. unclassified family AKYG1722 was promoted by Dodecanoic acid in non-rhizosphere soil, while promoted by Octadecane, 2-methyl- in rhizosphere soil. The study illustrated that high HMs level and rhizosphere affected soil properties and metabolites, by which soil microbial community structure was reshaped.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Tamaricaceae , Bacterias/genética , Bacterias/metabolismo , Metaboloma , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Tamaricaceae/metabolismo
4.
J Hazard Mater ; 424(Pt D): 127761, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34799177

RESUMEN

Conjugative plasmid transfer is a major contributor to the spread of antibiotic resistance genes (ARGs). However, the role of conventional fungicides on conjugative plasmid transfer has been neglected. Based on the condition that the increasing use of the combination of nano- and conventional fungicides will lead to combined contamination, the effects of a conventional fungicide prochloraz alone or in combination with nano-CuO on the conjugation of plasmid RP4 between Escherichia coli in phosphate-buffered saline were investigated in this study. The results demonstrated that 50 µg/L prochloraz alone significantly increased the conjugative transfer by 1.82 folds. The combination of 100 µg/L nano-CuO and prochloraz at 5, 50, and 500 µg/L significantly increased the conjugation by 2.56, 3.61, and 2.13 folds, respectively. The promotion of conjugative transfer of ARGs mediated by fungicides is mainly attributed to (i) the increased cell membrane permeability, (ii) the increased cell adhesion via enhancing the synthesis of polysaccharides in extracellular polymeric substances, and (iii) the up-regulation of the genes relevant to conjugation, oxidative stress, SOS response, outer membrane, polysaccharide export, intercellular adhesion, and ATP synthesis. Our findings provide evidence for the contribution of fungicides to ARGs transfer, which is significant to control the risk of ARGs dissemination.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Escherichia coli/genética , Transferencia de Gen Horizontal , Genes Bacterianos , Imidazoles , Plásmidos/genética , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...