Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
2.
Infect Dis Model ; 9(2): 618-633, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38645696

RESUMEN

The rapid acceleration of global warming has led to an increased burden of high temperature-related diseases (HTDs), highlighting the need for advanced evidence-based management strategies. We have developed a conceptual framework aimed at alleviating the global burden of HTDs, grounded in the One Health concept. This framework refines the impact pathway and establishes systematic data-driven models to inform the adoption of evidence-based decision-making, tailored to distinct contexts. We collected extensive national-level data from authoritative public databases for the years 2010-2019. The burdens of five categories of disease causes - cardiovascular diseases, infectious respiratory diseases, injuries, metabolic diseases, and non-infectious respiratory diseases - were designated as intermediate outcome variables. The cumulative burden of these five categories, referred to as the total HTD burden, was the final outcome variable. We evaluated the predictive performance of eight models and subsequently introduced twelve intervention measures, allowing us to explore optimal decision-making strategies and assess their corresponding contributions. Our model selection results demonstrated the superior performance of the Graph Neural Network (GNN) model across various metrics. Utilizing simulations driven by the GNN model, we identified a set of optimal intervention strategies for reducing disease burden, specifically tailored to the seven major regions: East Asia and Pacific, Europe and Central Asia, Latin America and the Caribbean, Middle East and North Africa, North America, South Asia, and Sub-Saharan Africa. Sectoral mitigation and adaptation measures, acting upon our categories of Infrastructure & Community, Ecosystem Resilience, and Health System Capacity, exhibited particularly strong performance for various regions and diseases. Seven out of twelve interventions were included in the optimal intervention package for each region, including raising low-carbon energy use, increasing energy intensity, improving livestock feed, expanding basic health care delivery coverage, enhancing health financing, addressing air pollution, and improving road infrastructure. The outcome of this study is a global decision-making tool, offering a systematic methodology for policymakers to develop targeted intervention strategies to address the increasingly severe challenge of HTDs in the context of global warming.

3.
Nat Plants ; 10(4): 551-566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509222

RESUMEN

Plant genomes provide essential and vital basic resources for studying many aspects of plant biology and applications (for example, breeding). From 2000 to 2020, 1,144 genomes of 782 plant species were sequenced. In the past three years (2021-2023), 2,373 genomes of 1,031 plant species, including 793 newly sequenced species, have been assembled, representing a great leap. The 2,373 newly assembled genomes, of which 63 are telomere-to-telomere assemblies and 921 have been generated in pan-genome projects, cover the major phylogenetic clades. Substantial advances in read length, throughput, accuracy and cost-effectiveness have notably simplified the achievement of high-quality assemblies. Moreover, the development of multiple software tools using different algorithms offers the opportunity to generate more complete and complex assemblies. A database named N3: plants, genomes, technologies has been developed to accommodate the metadata associated with the 3,517 genomes that have been sequenced from 1,575 plant species since 2000. We also provide an outlook for emerging opportunities in plant genome sequencing.

4.
ACS Appl Mater Interfaces ; 16(14): 18019-18029, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38546167

RESUMEN

With the continuous advancement of electrodialysis (ED) technology, there arises a demand for improved monovalent cation exchange membranes (CEMs). However, limitations in membrane materials and structures have resulted in the low selectivity of monovalent CEMs, posing challenges in the separation of Li+ and Mg2+. In this investigation, a designed CEM with a swelling-embedded structure was created by integrating a polyelectrolyte containing N-oxide Zwitterion into a sulfonated poly(ether ether ketone) (SPEEK) membrane, leveraging the notable solubility characteristic of SPEEK. The membranes were prepared by using N-oxide zwitterionic polyethylenimine (ZPEI) and 1,3,5-benzenetrlcarbonyl trichloride (TMC). The as-prepared membranes underwent systematic characterization and testing, evaluating their structural, physicochemical, electrochemical, and selective ED properties. During ED, the modified membranes demonstrated notable permeability selectivity for Li+ ions in binary (Li+/Mg2+) systems. Notably, at a constant current density of 2.5 mA cm-2, the modified membrane PEI-TMC/SPEEK exhibited significant permeability selectivity (PMg2+Li+=5.63) in the Li+/Mg2+ system, while ZPEI-TMC/SPEEK outperformed, displaying remarkable permeability selectivity (PMg2+Li+=12.43) in the Li+/Mg2+ system, surpassing commercial monovalent cation-selective membrane commercial monovalent cation-selective membrane (CIMS). Furthermore, in the Li+/Mg2+ binary system, Li+ flux reached 9.78 × 10-9 mol cm-2 s-1 for ZPEI-TMC/SPEEK, while its Mg2+ flux only reached 2.7 × 10-9 mol cm-2 s-1, showing potential for lithium-magnesium separation. In addition, ZPEI-TMC/SPEEK was tested for performance and stability at high current densities. This work offers a straightforward preparation process and an innovative structural approach, presenting methodological insights for the advancement of lithium and magnesium separation techniques.

5.
Plant Physiol Biochem ; 208: 108484, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38452452

RESUMEN

Flavonoids have been shown to play an essential role in plant growth and fertility. 4-Coumarate CoA ligase (4CL) is one of the indispensable enzymes involved in the biosynthesis of flavonoids. However, the role of 4CL and flavonoids in impact on cotton fertility is still unknown. In this study, on the basis of identification of an additional Gh4CL gene, Gh4CL20A, by using an updated G. hirsutum genome, we found that Gh4CL20A and its homologous Gh4CL20 were preferentially expressed in petals and stamens. The petals of the loss-of-function Gh4CL20/Gh4CL20A mutant generated by CRISPR/Cas9 gene editing remained white until wilting. Notably, the mutant showed indehiscent anthers, reduced number of pollen grains and pollen viability, leading to male sterility. Histological analysis revealed that abnormal degradation of anther tapetum at the tetrad stage and abnormal pollen grain development at the mature stage caused male sterility of the gene editing mutant. Analysis of the anther transcriptome identified a total of 10574 and 11962 genes up- and down-regulated in the mutant, respectively, compared to the wild-type. GO, KEGG, and WGCNA analyses linked the abnormality of the mutant anthers to the defective flavonoid biosynthetic pathway, leading to decreased activity of 4CL and chalcone isomerase (CHI) and reduced accumulation of flavonoids in the mutant. These results imply a role of Gh4CL20/Gh4CL20A in assuring proper development of cotton anthers by regulating flavonoid metabolism. This study elucidates a molecular mechanism underlying cotton anther development and provides candidate genes for creating cotton male sterile germplasm that has the potential to be used in production of hybrid seeds.


Asunto(s)
Gossypium , Infertilidad Masculina , Masculino , Humanos , Gossypium/metabolismo , Transcriptoma , Flavonoides/metabolismo , Fertilidad , Regulación de la Expresión Génica de las Plantas , Flores/genética , Infertilidad Vegetal/genética
6.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38486346

RESUMEN

Commelinales belongs to the commelinids clade, which also comprises Poales that includes the most important monocot species, such as rice, wheat, and maize. No reference genome of Commelinales is currently available. Water hyacinth (Pontederia crassipes or Eichhornia crassipes), a member of Commelinales, is one of the devastating aquatic weeds, although it is also grown as an ornamental and medical plant. Here, we present a chromosome-scale reference genome of the tetraploid water hyacinth with a total length of 1.22 Gb (over 95% of the estimated size) across 8 pseudochromosome pairs. With the representative genomes, we reconstructed a phylogeny of the commelinids, which supported Zingiberales and Commelinales being sister lineages of Arecales and shed lights on the controversial relationship of the orders. We also reconstructed ancestral karyotypes of the commelinids clade and confirmed the ancient commelinids genome having 8 chromosomes but not 5 as previously reported. Gene family analysis revealed contraction of disease-resistance genes during polyploidization of water hyacinth, likely a result of fitness requirement for its role as a weed. Genetic diversity analysis using 9 water hyacinth lines from 3 continents (South America, Asia, and Europe) revealed very closely related nuclear genomes and almost identical chloroplast genomes of the materials, as well as provided clues about the global dispersal of water hyacinth. The genomic resources of P. crassipes reported here contribute a crucial missing link of the commelinids species and offer novel insights into their phylogeny.


Asunto(s)
Eichhornia , Eichhornia/genética , Genómica , Resistencia a la Enfermedad , Europa (Continente) , Ejercicio Físico
7.
J Mol Neurosci ; 74(1): 28, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441703

RESUMEN

Mounting evidence suggests a significant correlation between depressive disorders and neurodegenerative conditions, encompassing Alzheimer's disease and Parkinson's disease (PD). Depression represents a substantial non-motor manifestation frequently identified in individuals with PD, posing a significant threat to patients' overall well-being and necessitating the implementation of effective management strategies. Despite its high prevalence, impacting over 40% of PD patients, the precise cellular and molecular mechanisms underlying depression and its relationship to dopaminergic system degeneration remain largely ambiguous. In this study, we presented our findings demonstrating distinct characteristics of cortical astrocytes in PD patients compared to reactivated glial cells in the substantia nigra. We identified a subset of differentially expressed genes associated with depressive disorders from PD-associated cortical astrocytes. Furthermore, we uncovered the potential involvement of the hypoxia signaling in driving cortical astrocytic dysfunctions. Through a comprehensive investigation utilizing transcriptome and chromatin accessibility analyses on cultured human astrocytes, we revealed that hypoxic treatment could induce similar expression changes observed in cortex from PD patients. Additionally, we provided evidence that activation of the HIF-1 signaling pathway suppressed the expression of key components of mitochondrial ribosomes and electron transport chain proteins COX2 and CYTB, resulting in abnormal mitochondrial membrane potential. Our results underscore the potential impact of glial metabolic abnormalities on the development of depressive disorders associated with Parkinson's disease.


Asunto(s)
Astrocitos , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Depresión/etiología , Neuroglía , Hipoxia
8.
Chem Biodivers ; 21(4): e202400206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380820

RESUMEN

Agricultural pests are the primary contributing factor to crop yield reduction, particularly in underdeveloped regions. Despite the significant efficacy of pesticides in pest control, their extensive use has led to the drug-fast of insecticide resistance. Developing of new environmentally friendly plant-based pesticides is an urgent necessity. In this study, a series of diaryl ether compounds containing propargyloxy and sulfonamide groups were designed. The synthesis of these 36 compounds primarily relied on nuclear magnetic resonance for structure determination, while single-crystal X-ray diffraction was employed for certain compounds. Meanwhile, the insecticidal activities against Mythimna separata were also assessed. Some of the compounds exhibited significantly enhanced activity, the LC50 value of the highest activity compound TD8 (0.231 mg/mL) demonstrating respective increases by 100-fold compared to the plant pesticide celangulin V (23.9 mg/mL), and a 5-fold increase with the positive control L-1 (1.261 mg/mL). The interaction between the target compound and the target, as well as the consistency of the target, were verified through symptomological analysis and molecular docking. The structure-activity relationships were also conducted. This study offered a novel trajectory for the advancement and formulation of future pesticides.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Animales , Estructura Molecular , Insecticidas/química , Éteres Fenílicos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
9.
Brain Res Bull ; 208: 110894, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325758

RESUMEN

Neutrophil infiltration has been linked to worse clinical outcomes after ischemic stroke. Microglia, a key type of immune-competent cell, engage in cross-talk with the infiltrating immune cells in the inflamed brain area, yet the molecular mechanisms involved remain largely unexplored. In this study, we investigated the mechanisms of how canonical transient receptor potential 1 (TRPC1) modulated neutrophil infiltration in male mouse cerebral ischemia and reperfusion injury (CIRI) models. Our findings revealed a notable upregulation of TRPC1 in microglia within both middle cerebral artery occlusion reperfusion (MCAO/R) and in vitro oxygen-glucose deprivation/regeneration (OGD/R) model. Conditional Trpc1 knockdown in microglia markedly reduced infarct volumes and alleviated neurological deficits. Microglia conditional Trpc1 knockdown mice displayed less neutrophil infiltration in peri-infarct area. Trpc1 knockdown microglia exhibited a reduced primed proinflammatory phenotype with less secretion of CC-Chemokines ligand (CCL) 5 and CCL2 after MCAO/R. Blocking CCL5/2 significantly mitigated neutrophil infiltration in microglia/neutrophil transwell co-culture system upon OGD/R condition. Trpc1 knockdown markedly reduced store-operated calcium entry and nuclear factor of activated T-cells c1 (NFATc1) level in OGD/R treated microglia. Overexpression of Nfatc1 reversed the CCL5/2 reducing effect of Trpc1 knockdown, which is mediated by small interfering RNA in BV2 cells upon OGD/R. Our data indicate that upregulation of TRPC1 in microglia stimulates the production of CCL5/2 through the Ca2+/NFATc1 pathway. Upregulated CCL5/2 leads to an increase in neutrophil infiltration into the brain, thereby aggravating reperfusion injury. Our results demonstrate the importance of TRPC1 in microglia-mediated neuroinflammation and suggest a potential means for reducing CIRI induced neurological injury.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Masculino , Ratones , Animales , Regulación hacia Arriba , Accidente Cerebrovascular Isquémico/metabolismo , Microglía/metabolismo , Infiltración Neutrófila , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Daño por Reperfusión/metabolismo , Accidente Cerebrovascular/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-38299408

RESUMEN

AIMS: Employing the technique of liquid chromatography-mass spectrometry (LCMS) in conjunction with artificial intelligence (AI) technology to predict and screen for antirheumatoid arthritis (RA) active compounds in Xanthocerais lignum. BACKGROUND: Natural products have become an important source of new drug discovery. RA is a chronic autoimmune disease characterized by joint inflammation and systemic inflammation. Although there are many drugs available for the treatment of RA, they still have many side effects and limitations. Therefore, finding more effective and safer natural products for the treatment of RA has become an important issue. METHODS: In this study, a collection of inhibitors targeting RA-related specific targets was gathered. Machine learning models and deep learning models were constructed using these inhibitors. The performance of the models was evaluated using a test set and ten-fold cross-validation, and the most optimal model was selected for integration. A total of five commonly used machine learning algorithms (logistic regression, k-nearest neighbors, support vector machines, random forest, XGBoost) and one deep learning algorithm (GCN) were employed in this research. Subsequently, a Xanthocerais lignum compound library was established through HPLC-Q-Exactive- MS analysis and relevant literature. The integrated model was utilized to predict and screen for anti-RA active compounds in Xanthocerais lignum. RESULTS: The integrated model exhibited an AUC greater than 0.94 for all target datasets, demonstrating improved stability and accuracy compared to individual models. This enhancement enables better activity prediction for unknown compounds. By employing the integrated model, the activity of 69 identified compounds in Xanthocerais lignum was predicted. The results indicated that isorhamnetin-3-O-glucoside, myricetin, rutinum, cinnamtannin B1, and dihydromyricetin exhibited inhibitory effects on multiple targets. Furthermore, myricetin and dihydromyricetin were found to have relatively higher relative abundances in Xanthocerais lignum, suggesting that they may serve as the primary active components contributing to its anti-RA effects. CONCLUSION: In this study, we utilized AI technology to learn from a large number of compounds and predict the activity of natural products from Xanthocerais lignum on specific targets. By combining AI technology and the LC-MS approach, rapid screening and prediction of the activity of natural products based on specific targets can be achieved, significantly enhancing the efficiency of discovering new bioactive molecules from medicinal plants.

11.
Mol Divers ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319483

RESUMEN

Celangulin V is a natural ß-dihydroagarofuran derivative isolated from Celastrus angulatus which shows insecticidal activity in many agricultural pests. Using celangulin V as a molecular probe, we find out a new pesticide target: subunit H of V-ATPase. To explore the potential application of this novel target, lead sulfonamides have been found through virtual screening. Combined with the previous work, 46 sulfonamide derivatives are designed and synthesized. All target compounds are first screened for their insecticidal activities against Mythimna separata. The results of bioassay reveal that most of the designed compounds exhibit significant insecticidal activities against third-instar larvae of M. separata under the concentration of 10 mg/mL, and compound 8.4 shows the highest activity with LC50 value of 1.72 mg/mL, 15-fold smaller than that of celangulin V (25.89 mg/mL). Molecular docking results further indicated that compound 8.4 might serve as a potential inhibitor of the subunit H of V-ATPase. This study provides a potential sulfonamide candidate compound for the M. separata control.

12.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397116

RESUMEN

Verticillium wilt (VW) is an important and widespread disease of cotton and once established is long-lived and difficult to manage. In Australia, the non-defoliating pathotype of Verticillium dahliae is the most common, and extremely virulent. Breeding cotton varieties with increased VW resistance is the most economical and effective method of controlling this disease and is greatly aided by understanding the genetics of resistance. This study aimed to investigate VW resistance in 240 F7 recombinant inbred lines (RIL) derived from a cross between MCU-5, which has good resistance, and Siokra 1-4, which is susceptible. Using a controlled environment bioassay, we found that resistance based on plant survival or shoot biomass was complex but with major contributions from chromosomes D03 and D09, with genomic prediction analysis estimating a prediction accuracy of 0.73 based on survival scores compared to 0.36 for shoot biomass. Transcriptome analysis of MCU-5 and Siokra 1-4 roots uninfected or infected with V. dahliae revealed that the two cultivars displayed very different root transcriptomes and responded differently to V. dahliae infection. Ninety-nine differentially expressed genes were located in the two mapped resistance regions and so are potential candidates for further identifying the genes responsible for VW resistance.


Asunto(s)
Verticillium , Fitomejoramiento , Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Perfilación de la Expresión Génica , Gossypium/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas
13.
Nat Commun ; 15(1): 804, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280865

RESUMEN

Purification of ethylene (C2H4) as the most extensive and output chemical, from complex multi-components is of great significance but highly challenging. Herein we demonstrate that precise pore structure tuning by controlling the network hydrogen bonds in two highly-related porous coordination networks can shift the efficient C2H4 separation function from C2H2/C2H4/C2H6 ternary mixture to CO2/C2H2/C2H4/C2H6 quaternary mixture system. Single-crystal X-ray diffraction revealed that the different amino groups on the triazolate ligands resulted in the change of the hydrogen bonding in the host network, which led to changes in the pore shape and pore chemistry. Gas adsorption isotherms, adsorption kinetics and gas-loaded crystal structure analysis indicated that the coordination network Zn-fa-atz (2) weakened the affinity for three C2 hydrocarbons synchronously including C2H4 but enhanced the CO2 adsorption due to the optimized CO2-host interaction and the faster CO2 diffusion, leading to effective C2H4 production from the CO2/C2H2/C2H4/C2H6 mixture in one step based on the experimental and simulated breakthrough data. Moreover, it can be shaped into spherical pellets with maintained porosity and separation performance.

14.
Stud Health Technol Inform ; 310: 1464-1465, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38269698

RESUMEN

The era of the electronic health record (EHR) requires lots of semantic interoperability for data sharing and reusability. We select HL7 v2 messages as the most common structured data type in hospital information systems, to investigate the plausibility of using Elasticsearch (ES) as a healthcare search engine and data analytics tool. Due to the facts, Elasticsearch can be integrated as a powerful searchable database for practical healthcare applications, to analyze structured healthcare data from various locations. It allows easy and efficient searching for complex query tasks.


Asunto(s)
Ciencia de los Datos , Sistemas de Información en Hospital , Bases de Datos Factuales , Registros Electrónicos de Salud , Instituciones de Salud
15.
Plant Commun ; 5(3): 100778, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38062703

RESUMEN

Pigmented rice stands out for its nutritional value and is gaining more and more attention. Wild rice, domesticated red rice, and weedy rice all have a red pericarp and a comprehensive genetic background in terms of the red-pericarp phenotype. We performed population genetic analyses using 5104 worldwide rice accessions, including 2794 accessions with red or black pericarps, 85 of which were newly sequenced in this study. The results suggested an evolutionary trajectory of red landraces originating from wild rice, and the split times of cultivated red and white rice populations were estimated to be within the past 3500 years. Cultivated red rice was found to feralize to weedy rice, and weedy rice could be further re-domesticated to cultivated red rice. A genome-wide association study based on the 2794 accessions with pigmented pericarps revealed several new candidate genes associated with the red-pericarp trait for further functional characterization. Our results provide genomic evidence for the origin of pigmented rice and a valuable genomic resource for genetic investigation and breeding of pigmented rice.


Asunto(s)
Genes de Plantas , Oryza , Variación Genética , Oryza/genética , Estudio de Asociación del Genoma Completo , Metagenómica , Evolución Molecular , Análisis de Secuencia de ADN , Genómica
16.
Hippocampus ; 34(2): 58-72, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049972

RESUMEN

Numerous epilepsy-related genes have been identified in recent decades by unbiased genome-wide screens. However, the available druggable targets for temporal lobe epilepsy (TLE) remain limited. Furthermore, a substantial pool of candidate genes potentially applicable to TLE therapy awaits further validation. In this study, we reveal the significant role of KCNQ2 and KCNQ3, two M-type potassium channel genes, in the onset of seizures in TLE. Our investigation began with a quantitative analysis of two publicly available TLE patient databases to establish a correlation between seizure onset and the downregulated expression of KCNQ2/3. We then replicated these pathological changes in a pilocarpine seizure mouse model and observed a decrease in spike frequency adaptation due to the affected M-currents in dentate gyrus granule neurons. In addition, we performed a small-scale simulation of the dentate gyrus network and confirmed that the impaired spike frequency adaptation of granule cells facilitated epileptiform activity throughout the network. This, in turn, resulted in prolonged seizure duration and reduced interictal intervals. Our findings shed light on an underlying mechanism contributing to ictogenesis in the TLE hippocampus and suggest a promising target for the development of antiepileptic drugs.


Asunto(s)
Epilepsia del Lóbulo Temporal , Ratones , Animales , Humanos , Epilepsia del Lóbulo Temporal/patología , Giro Dentado/metabolismo , Convulsiones/inducido químicamente , Convulsiones/patología , Hipocampo/metabolismo , Neuronas/fisiología , Canal de Potasio KCNQ2/genética
17.
Redox Biol ; 69: 103002, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142583

RESUMEN

Lipid peroxidation and redox imbalance are hallmarks of ferroptosis, an iron-dependent form of cell death. Growing evidence suggests that dysregulation in glycolipid metabolism and iron homeostasis substantially contribute to the development of hepatocellular carcinoma (HCC). However, there is still a lack of comprehensive understanding regarding the specific transcription factors that are capable of coordinating glycolipid and redox homeostasis to initiate the onset of ferroptosis. We discovered that overexpression of SOX8 leads to impaired mitochondria integrate, increased oxidative stress, and enhanced lipid peroxidation. These effects can be attributed to the inhibitory impact of SOX8 on de novo lipogenesis, glycolysis, the tricarboxylic acid cycle (TCA), and the pentose phosphate pathway (PPP). Additionally, upregulation of SOX8 results in reduced synthesis of NADPH, disturbance of redox homeostasis, disruption of mitochondrial structure, and impairment of the electron transport chain. Furthermore, the overexpression of SOX8 enhances the process of ferroptosis by upregulating the expression of genes associated with ferroptosis and elevating intracellular levels of ferrous ion. Importantly, the overexpressing of SOX8 has been observed to inhibit the proliferation of HCC in immunodeficient animal models. In conclusion, the findings suggest that SOX8 has the ability to alter glycolipid and iron metabolism of HCC cells, hence triggering the process of ferroptosis. The results of our study present a novel strategy for targeting ferroptosis in the therapy of HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/genética , Ferroptosis/genética , Neoplasias Hepáticas/genética , Glucolípidos , Hierro
18.
Genetics ; 226(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38147531

RESUMEN

Numerous genetic loci and several functionally characterized genes have been linked to determination of lint percentage (lint%), one of the most important cotton yield components, but we still know little about the major genetic components underlying lint%. Here, we first linked the genetic loci containing MYB25-like_At and HD1_At to the fiberless seed trait of 'SL1-7-1' and found that MYB25-like_At and HD1_At were very lowly expressed in 'SL1-7-1' ovules during fiber initiation. We then dissected the genetic components involved in determination of lint% using segregating populations derived from crosses of fuzzless mutants and intermediate segregants with different lint%, which not only confirmed the HD1_At locus but identified the HD1_Dt locus as being the major genetic components contributing to fiber initiation and lint%. The segregating populations also allowed us to evaluate the relative contributions of MYB25-like_At, MYB25-like_Dt, HD1_At, and HD1_Dt to lint%. Haplotype analysis of an Upland cotton (Gossypium hirsutum) population with 723 accessions (including 81 fuzzless seed accessions) showed that lint% of the accessions with the LP allele (higher lint%) at MYB25-like_At, MYB25-like_Dt, or HD1_At was significantly higher than that with the lp allele (lower lint%). The lint% of the Upland cotton accessions with 3 or 4 LP alleles at MYB25-like and HD1 was significantly higher than that with 2 LP alleles. The results prompted us to propose a strategy for breeding high-yielding cotton varieties, i.e. pyramiding the LP alleles of MYB25-like and HD1 with new lint% LP alleles without negative impact on seed size and fiber quality.


Asunto(s)
Gossypium , Fitomejoramiento , Gossypium/genética , Fenotipo , Sitios Genéticos , Alelos
19.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38040493

RESUMEN

Designing 3D molecules with high binding affinity for specific protein targets is crucial in drug design. One challenge is that the atomic interaction between molecules and proteins in 3D space has to be taken into account. However, the existing target-aware methods solely model the joint distribution between the molecules and proteins, disregarding the binding affinities between them, which leads to limited performance. In this paper, we propose an explainable diffusion model to generate molecules that can be bound to a given protein target with high affinity. Our method explicitly incorporates the chemical knowledge of protein-ligand binding affinity into the diffusion model, and uses the knowledge to guide the denoising process towards the direction of high binding affinity. Specifically, an SE(3)-invariant expert network is developed to fit the Vina scoring functions and jointly trained with the denoising network, while the domain knowledge is distilled and conveyed from Vina functions to the expert network. An effective guidance is proposed on both continuous atom coordinates and discrete atom types by taking advantages of the gradient of the expert network. Experiments on the benchmark CrossDocked2020 demonstrate the superiority of our method. Additionally, an atom-level explanation of the generated molecules is provided, and the connections with the domain knowledge are established.


Asunto(s)
Diseño de Fármacos , Proteínas , Proteínas/química , Unión Proteica , Ligandos
20.
Curr Vasc Pharmacol ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38141195

RESUMEN

INTRODUCTION: Myocardial ischaemia reperfusion injury (MIRI) determines infarct size and long-term outcomes after acute myocardial infarction (AMI). Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, alleviates MIRI in animal models. METHOD: We investigated the potential mechanisms underlying the cardioprotective effect of dapagliflozin against MIRI, focusing on mitochondrial injury and mitophagy. MIRI mouse and H9C2 cell models were established. RESULTS: 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed a significant alleviation of MIRI after pre-treatment of dapagliflozin compared to the model group (14.91±1.76 vs. 40.47±3.69%). Data from the pre-treatment dapagliflozin group showed a significant decrease in left ventricular ejection fraction (LVEF) (44.8±2.7 vs. 28.5±5.3%, P<0.01), left ventricular end-diastolic volume (LVEDV) (70.6±9.5 vs. 93.5±13.8 ul, P<0.05), and left ventricular end-systolic volume (LVESV) (39.0± 8.3 vs. 67.9±13.7 ul, P<0.05) compared to the model group. Dapagliflozin also reduced the levels of reactive oxygen species (ROS) and fragmented mitochondrial DNA, reversed the decrease in mitochondrial membrane potential, and suppressed apoptosis. Further study showed that dapagliflozin could protect against mitochondrial injury by rapidly clearing damaged mitochondria via mitophagy in a phosphatase and tensin homologue (PTEN)-induced putative kinase 1 (PINK1)/parkindependent manner. Dapagliflozin regulated mitophagy in cardiomyocytes by suppressing the adenosine 5'monophosphate-activated protein kinase (AMPK)-PINK1/parkin signalling pathway, resulting in attenuated MIRI. CONCLUSION: Dapagliflozin alleviated MIRI by activating mitophagy via the AMPK-PINK1/parkin signalling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...