Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(44): 14866-14877, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32817168

RESUMEN

Group 2 innate lymphoid cells (ILC2s) represent a subset of newly discovered immune cells that are involved in immune reactions against microbial pathogens, host allergic reactions, as well as tissue repair. The basic helix-loop-helix transcription factors collectively called E proteins powerfully suppress the differentiation of ILC2s from bone marrow and thymic progenitors while promoting the development of B and T lymphocytes. How E proteins exert the suppression is not well understood. Here we investigated the underlying molecular mechanisms using inducible gain and loss of function approaches in ILC2s and their precursors, respectively. Cross-examination of RNA-seq and ATAC sequencing data obtained at different time points reveals a set of genes that are likely direct targets of E proteins. Consequently, a widespread down-regulation of chromatin accessibility occurs at a later time point, possibly due to the activation of transcriptional repressor genes such as Cbfa2t3 and Jdp2 The large number of genes repressed by gain of E protein function leads to the down-regulation of a transcriptional network important for ILC2 differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Redes Reguladoras de Genes , Inmunidad Innata , Linfocitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Cromatina/metabolismo , Expresión Génica , Linfocitos/citología , Linfocitos/inmunología , Ratones
2.
Immunohorizons ; 3(12): 593-605, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852728

RESUMEN

Innate lymphoid cells (ILCs) are tissue-resident lymphoid cells that reside mostly at barrier surfaces and participate in the initial response against pathogens. They are classified into different types based on effector programs that are based on cytokine production and transcription factor expression. They all derive from the common lymphoid precursor, but the molecular mechanisms regulating ILC subset development is not well understood. Experiments using Id2 knockout mice have previously shown that E protein activity inhibition is an absolute requirement for the development of all ILC subsets. In this study, we use a genetic approach to demonstrate that small increases in E protein activity during ILC development selectively inhibit type 2 ILC development. Type 1 ILCs are mostly unperturbed, and type 3 ILC show only a minor inhibition. This effect is first evident at the ILC2 progenitor stage and is ILC intrinsic. Therefore, our results demonstrate that modulation of E protein activity can bias cell fate decisions in developing ILCs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Inmunidad Innata/inmunología , Células T Asesinas Naturales/inmunología , Factor de Transcripción 4/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/inmunología , Femenino , Regulación de la Expresión Génica/inmunología , Técnicas de Sustitución del Gen , Células Progenitoras Linfoides/metabolismo , Masculino , Ratones , Ratones Transgénicos
3.
J Exp Med ; 216(4): 884-899, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30898894

RESUMEN

Current models propose that group 2 innate lymphoid cells (ILC2s) are generated in the bone marrow. Here, we demonstrate that subsets of these cells can differentiate from multipotent progenitors and committed T cell precursors in the thymus, both in vivo and in vitro. These thymic ILC2s exit the thymus, circulate in the blood, and home to peripheral tissues. Ablation of E protein transcription factors greatly promotes the ILC fate while impairing B and T cell development. Consistently, a transcriptional network centered on the ZBTB16 transcription factor and IL-4 signaling pathway is highly up-regulated due to E protein deficiency. Our results show that ILC2 can still arise from what are normally considered to be committed T cell precursors, and that this alternative cell fate is restrained by high levels of E protein activity in these cells. Thymus-derived lung ILC2s of E protein-deficient mice show different transcriptomes, proliferative properties, and cytokine responses from wild-type counterparts, suggesting potentially distinct functions.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Células Precursoras de Linfocitos T/metabolismo , Factor de Transcripción 4/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Interleucina-4/metabolismo , Pulmón/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo , Timo/citología , Factor de Transcripción 4/genética , Transcripción Genética , Transcriptoma
4.
J Immunol ; 198(8): 3149-3156, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28258196

RESUMEN

Innate lymphoid cells (ILCs) are important regulators in various immune responses. The current paradigm states that all newly made ILCs originate from common lymphoid progenitors in the bone marrow. Id2, an inhibitor of E protein transcription factors, is indispensable for ILC differentiation. Unexpectedly, we found that ectopically expressing Id1 or deleting two E protein genes in the thymus drastically increased ILC2 counts in the thymus and other organs where ILC2 normally reside. Further evidence suggests a thymic origin of these mutant ILC2s. The mutant mice exhibit augmented spontaneous infiltration of eosinophils and heightened responses to papain in the lung and increased ability to expulse the helminth parasite, Nippostrongylus brasiliensis These results prompt the questions of whether the thymus naturally has the capacity to produce ILC2s and whether E proteins restrain such a potential. The abundance of ILC2s in Id1 transgenic mice also offers a unique opportunity for testing the biological functions of ILC2s.


Asunto(s)
Diferenciación Celular/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , Células Progenitoras Linfoides/inmunología , Timo/inmunología , Animales , Linaje de la Célula/inmunología , Separación Celular , Regulación hacia Abajo , Citometría de Flujo , Proteína 1 Inhibidora de la Diferenciación/inmunología , Linfocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Timo/citología
5.
PLoS One ; 12(3): e0174011, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28301594

RESUMEN

Daxx was originally isolated as a Fas-binding protein. However, the in vivo function of Daxx in Fas-induced apoptosis has remained enigmatic. Fas plays an important role in homeostasis in the immune system. Fas gene mutations lead to autoimmune-lymphoproliferation (lpr) diseases characterized by hyperplasia of secondary lymphoid organs. It is well established that the FADD adaptor binds to Fas, and recruits/activates caspase 8. However, additional proteins including Daxx have also been indicated to associate with Fas. It was proposed that Daxx mediates a parallel apoptotic pathway that is independent of FADD and caspase 8, but signals through ASK1-mediated apoptotic pathway. However, because the deletion of Daxx leads to embryonic lethality, the in vivo function of Daxx has not been properly analyzed. In the current study, analysis was performed using a conditional mutant mouse in which Daxx was deleted specifically in T cells. The data show that Daxx-/- T cells were able to undergo normal Fas-induced apoptosis. While containing normal thymocyte populations, the T cell-specific Daxx-/- mice have a reduced peripheral T cell pool. Importantly, Daxx-deficient T cells displayed increased death responses upon activation through TCR stimulation. These results unequivocally demonstrated that Daxx does not mediate Fas-induced apoptosis, but rather that it plays a critical role in survival responses in primary mature T cells.


Asunto(s)
Apoptosis/fisiología , Proteínas Portadoras/fisiología , Supervivencia Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Nucleares/fisiología , Linfocitos T/citología , Receptor fas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proliferación Celular , Proteínas Co-Represoras , Citometría de Flujo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Transgénicos , Chaperonas Moleculares , Proteínas Nucleares/metabolismo
6.
J Biol Chem ; 290(21): 13344-53, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25855793

RESUMEN

3' repair exonuclease 1 (TREX1) is a known DNA exonuclease involved in autoimmune disorders and the antiviral response. In this work, we show that TREX1 is also a RNA exonuclease. Purified TREX1 displays robust exoribonuclease activity that degrades single-stranded, but not double-stranded, RNA. TREX1-D200N, an Aicardi-Goutieres syndrome disease-causing mutant, is defective in degrading RNA. TREX1 activity is strongly inhibited by a stretch of pyrimidine residues as is a bacterial homolog, RNase T. Kinetic measurements indicate that the apparent Km of TREX1 for RNA is higher than that for DNA. Like RNase T, human TREX1 is active in degrading native tRNA substrates. Previously reported TREX1 crystal structures have revealed that the substrate binding sites are open enough to accommodate the extra hydroxyl group in RNA, further supporting our conclusion that TREX1 acts on RNA. These findings indicate that its RNase activity needs to be taken into account when evaluating the physiological role of TREX1.


Asunto(s)
Exodesoxirribonucleasas/metabolismo , Exorribonucleasas/metabolismo , Fosfoproteínas/metabolismo , ARN/química , ARN/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , ADN/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Humanos , Cinética , Datos de Secuencia Molecular , Mutación/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Conformación Proteica , Multimerización de Proteína , Homología de Secuencia de Aminoácido
7.
Nucleic Acids Res ; 42(3): 1671-83, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24170812

RESUMEN

MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3' side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5' side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Proteína del Grupo de Complementación A de la Anemia de Fanconi/química , Humanos , Metoxaleno/farmacología
8.
PLoS One ; 8(12): e82666, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349332

RESUMEN

In eukaryotic cells, Flap endonuclease 1 (FEN1) is a major structure-specific endonuclease that processes 5' flapped structures during maturation of lagging strand DNA synthesis, long patch base excision repair, and rescue of stalled replication forks. Here we report that fanconi anemia complementation group A protein (FANCA), a protein that recognizes 5' flap structures and is involved in DNA repair and maintenance of replication forks, constantly stimulates FEN1-mediated incision of both DNA and RNA flaps. Kinetic analyses indicate that FANCA stimulates FEN1 by increasing the turnover rate of FEN1 and altering its substrate affinity. More importantly, six pathogenic FANCA mutants are significantly less efficient than the wild-type at stimulating FEN1 endonuclease activity, implicating that regulation of FEN1 by FANCA contributes to the maintenance of genomic stability.


Asunto(s)
Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Activación Enzimática , Proteína del Grupo de Complementación A de la Anemia de Fanconi/química , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Endonucleasas de ADN Solapado/genética , Humanos , Cinética , Mutación , Dominios y Motivos de Interacción de Proteínas
9.
DNA Repair (Amst) ; 12(5): 377-88, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23522793

RESUMEN

The Y-family of DNA polymerases support of translesion DNA synthesis (TLS) associated with stalled DNA replication by DNA damage. Recently, a number of studies suggest that some specialized TLS polymerases also support other aspects of DNA metabolism beyond TLS in vivo. Here we show that mouse polymerase kappa (Polκ) could accumulate at laser-induced sites of damage in vivo resembling polymerases eta and iota. The recruitment was mediated through Polκ C-terminus which contains the PCNA-interacting peptide, ubiquitin zinc finger motif 2 and nuclear localization signal. Interestingly, this recruitment was significantly reduced in MSH2-deficient LoVo cells and Rad18-depleted cells. We further observed that Polκ-deficient mouse embryo fibroblasts were abnormally sensitive to H2O2 treatment and displayed defects in both single-strand break repair and double-strand break repair. We speculate that Polκ may have an important role in strand break repair following oxidative stress in vivo.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Peróxido de Hidrógeno/farmacología , Rayos Láser , Ratones , Ratones Noqueados , Proteína 2 Homóloga a MutS/metabolismo , Señales de Localización Nuclear , Estrés Oxidativo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Estructura Terciaria de Proteína
10.
J Biol Chem ; 287(7): 4800-7, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22194614

RESUMEN

The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.


Asunto(s)
ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Proteína del Grupo de Complementación A de la Anemia de Fanconi/química , Proteínas de Unión al ARN/química , ARN/química , Sustitución de Aminoácidos , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Humanos , Mutación Missense , Mapeo Peptídico , Unión Proteica , Estructura Terciaria de Proteína , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Front Biosci (Landmark Ed) ; 15(3): 1131-49, 2010 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-20515746

RESUMEN

Fanconi anemia (FA) is a recessive genetic disorder characterized by developmental defects, bone marrow failure, and cancer susceptibility. The complete set of FA genes has only been identified recently and seems to be uniquely conserved among vertebrates. Fanconi anemia proteins have been implicated in the repair of interstrand DNA crosslinks that block DNA replication and transcription. Although all thirteen FA complementation groups show similar clinical and cellular phenotypes, approximately 85% of patients presented defective FANCA, FANCC, or FANCG. The established DNA interacting components (FANCM, FANCI, FANCD2, and FANCJ) account only for approximately 5% of all FA patients, an observation that raises doubt concerning the roles of FA proteins in DNA repair. In recent years, rapid progress in the area of FA research has provided great insights into the critical roles of FA proteins in DNA repair. However, many FA proteins do not have identifiable domains to indicate how they contribute to biological processes, particularly DNA repair. Therefore, future biochemical studies are warranted to understand the biological functions of FA proteins and their implications in human diseases.


Asunto(s)
Reparación del ADN/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Anemia de Fanconi/metabolismo , Transducción de Señal/fisiología , Animales , Daño del ADN , Reparación del ADN/genética , Replicación del ADN , Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Humanos , Modelos Genéticos , Fosforilación , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...