Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(23): 6858-6864, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38808664

RESUMEN

Mechanochemical strategies are widely used in various fields, ranging from friction and wear to mechanosynthesis, yet how the mechanical stress activates the chemical reactions at the electronic level is still open. We used first-principles density functional theory to study the rule of the stress-modified electronic states in transmitting mechanical energy to trigger chemical responses for different mechanochemical systems. The electron density redistribution among initial, transition, and final configurations is defined to correlate the energy evolution during reactions. We found that stress-induced changes in electron density redistribution are linearly related to activation energy and reaction energy, indicating the transition from mechanical work to chemical reactivity. The correlation coefficient is defined as the term "interface reactivity coefficient" to evaluate the susceptibility of chemical reactivity to mechanical action for material interfaces. The study may shed light on the electronic mechanism of the mechanochemical reactions behind the fundamental model as well as the mechanochemical phenomena.

2.
Nano Lett ; 24(13): 3866-3873, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38442405

RESUMEN

The low wear resistance of macroscale graphene coatings does not match the ultrahigh mechanical strength and chemical inertness of the graphene layer itself; however, the wear mechanism responsible for this issue at low mechanical stress is still unclear. Here, we demonstrate that the susceptibility of the graphene monolayer to wear at its atomic step edges is governed by the mechanochemistry of frictional interfaces. The mechanochemical reactions activated by chemically active SiO2 microspheres result in atomic attrition rather than mechanical damage such as surface fracture and folding by chemically inert diamond tools. Correspondingly, the threshold contact stress for graphene edge wear decreases more than 30 times to the MPa level, and mechanochemical wear can be described well with the mechanically assisted Arrhenius-type kinetic model, i.e., exponential dependence of the removal rate on the contact stress. These findings provide a strategy for improving the antiwear of graphene-based materials by reducing the mechanochemical interactions at tribological interfaces.

3.
Langmuir ; 39(37): 13222-13227, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37658471

RESUMEN

Friction-induced surface amorphization of silicon is one of the most important surface wear and damage forms, changing the material properties and harming the reliability of silicon-based devices. However, knowledge regarding the amorphization mechanisms as well as the effects of temperature is still insufficient, because the experimental measurements of the crystal-amorphous interface structures and evolutions are extremely difficult. In this work, we aim to fully reveal the temperature dependence of silicon amorphization behaviors and relevant mechanisms by using reactive molecular dynamics simulations. We first show that the degree of amorphization is suppressed by the increasing temperature, contrary to our initial expectations. Then, we further revealed that the observed silicon amorphization behaviors are attributed to two independent processes: One is a thermoactivated and shear-driven amorphization process where the theoretical amorphization rate shows an interesting valley-like temperature dependence because of the competition between the increased thermal activation effect and the reduction of shear stress, and another one is a thermoactivated recrystallization process which shows a monotonically increasing trend with temperature. Thus, the observed reduction of amorphization with temperature is mainly due to the recrystallization effect. Additionally, analytical models are proposed in this work to describe both the amorphization and the recrystallization processes. Overall, the present findings provide deep insights into the temperature-dependent amorphization and recrystallization processes of silicon, benefiting the further development of silicon-based devices and technologies.

4.
Nano Lett ; 23(19): 8842-8849, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37729549

RESUMEN

Wear of sliding contacts causes device failure and energy costs; however, the microscopic principle in activating wear of the interfaces under stress is still open. Here, the typical nanoscale wear, in the case of silicon against silicon dioxide, is investigated by single-asperity wear experiments and density functional theory calculations. The tests demonstrate that the wear rate of silicon in ambient air increases exponentially with stress and does not obey classical Archard's law. Series calculations of atomistic wear reactions generally reveal that the mechanical stress linearly drives the electron transfer to activate the sequential formation and rupture of interfacial bonds in the atomistic wear process. The atomistic wear model is thus resolved by combining the present stress-driven electron transfer model with Maxwell-Boltzmann statistics. This work may advance electronic insights into the law of nanoscale wear for understanding and controlling wear and manufacturing of material surfaces.

5.
Adv Sci (Weinh) ; 10(30): e2303013, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37661586

RESUMEN

Despite the numerous unique properties revealed through tribology research on graphene, the development of applications that utilize its rich tribological properties remains a long-sought goal. In this article, a novel approach for reversible patterning of graphene's frictional properties using out-of-plane mechanical tapping is presented. The friction force between the atomic force microscopy (AFM) tip and the graphene film is increased by up to a factor of two, which can be attributed to variations in the interfacial binding strength between the graphene and substrate through the tapping process. The reversible and repeatable frictional properties of graphene make it a promising material for information storage applications with a high storage capacity of ≈1600 GB inch-2 , allowing for direct writing and erasing of information, akin to a blackboard. These findings highlight the potential for friction tuning in lamellar materials and emphasize the significance of understanding nanoscale friction on graphene surfaces.

6.
Mater Horiz ; 10(11): 4940-4951, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37609940

RESUMEN

Building prosthetics indistinguishable from human limbs to accurately receive and transmit sensory information to users not only promises to radically improve the lives of amputees, but also shows potential in a range of robotic applications. Currently, a mainstream approach is to embed electrical or optical sensors with force/thermal sensing functions on the surface or inside of prosthetic fingers. Compared with electrical sensing technologies, tactile sensors based on stretchable optical waveguides have the advantages of easy fabrication, chemical safety, environmental stability, and compatibility with prosthetic structural materials. However, so far, research has mainly focused on the perception of finger joint motion or external press, and there is still a lack of study on optical sensors with fingertip tactile capabilities (such as texture, hardness, slip detection, etc.). Here we report a 3D printing prosthetic finger with flexible chromatic optical waveguides implanted at the fingertip. The finger achieves distributed displacement/force sensing detection, and exhibits high sensitivity, fast response and good stability. The finger can be used to conduct active sensory experiments, and the detection parameters include object contour, hardness, slip direction and speed, temperature, etc. Finally, exploratory research on identifying and manipulating objects is carried out with this finger. The developed prosthetic finger can artificially recreate touch perception and realize complex functions such as note-writing analysis and braille recognition.


Asunto(s)
Dedos , Percepción del Tacto , Humanos , Dedos/fisiología , Extremidad Superior , Tacto/fisiología , Fenómenos Mecánicos
7.
Lab Chip ; 23(17): 3794-3801, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37498210

RESUMEN

As core parts of microfluidic chip analysis systems, micromixers show robust applications in wide fields. However, restricted by the fabrication technology, it remains challenging to achieve high-quality micromixers with both delicately designed structure and efficient mixing. In this study, based on the theory of chaotic mixing, sinusoidal structures with variable phases were designed and then fabricated through scanning probe lithography (SPL) and post-selective etching. It was found that scratches with phase differences can lead to the periodic formation of amorphous silicon (a-Si), which can resist etching. Consequentially, misaligned sine channels with thick-thin alternating 3D shapes can be generated in situ from the scratched traces after the etching. Further analysis showed that a thicker a-Si layer can be obtained by reducing the line spacing in the scratching, confirmed by Raman detections and simulations. With the proposed method, the misaligned sine micromixer was achieved with higher mixing efficiency than ever. The duplicating process was also investigated for high-precision production of micromixers. The study provided strategies for the miniaturization of high-performance microfluidic chips.

8.
ACS Nano ; 17(10): 9255-9261, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37171168

RESUMEN

Nanowires (NWs) provide opportunities for building high-performance sensors and devices at micro-/nanoscales. Directional movement and assembly of NWs have attracted extensive attention; however, controllable manipulation remains challenging partly due to the lack of understanding on interfacial interactions between NWs and substrates (or contacting probes). In the present study, lateral bending of Ag NWs was investigated under various bending angles and pushing velocities, and the mechanical performance corresponding to microstructures was clarified based on high-resolution transmission electron microscope (HRTRM) detections. The bending-angle-dependent fractures of Ag NWs were detected by an atomic force microscope (AFM) and a scanning electron microscope (SEM), and the fractures occurred when the bending angle was larger than 80°. Compared with an Ag substrate, Ag NWs exhibited a lower system stiffness according to the nanoindentation with an AFM probe. HRTRM observations indicated that there were grain boundaries inside Ag NWs, which would be contributors to the generation of fractures and cracks on Ag NWs during lateral bending and nanoindentation. This study provides a guide to controllably manipulate NWs and fabricate high-performance micro-/nanodevices.

9.
Small ; 19(37): e2301515, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37162454

RESUMEN

Two-dimensional (2D) lamellar materials are normally capable of rendering super-low friction, wear protection, and adhesion reduction in nanoscale due to their ultralow shear strength between two basal plane surfaces. However, high friction at step edges prevents the 2D materials from achieving super-low friction in macroscale applications and eventually leads to failure of lubrication performance. Here, taking graphene as an example, the authors report that not all step edges are detrimental. The armchair (AC) step edges are found to have only a minor topographic effect on friction, while the zigzag (ZZ) edges cause friction two orders of magnitude larger than the basal plane. The AC step edge is less reactive and thus more durable. However, the ZZ structure prevails when step edges are produced mechanically, for example, through mechanical exfoliation or grinding of graphite. The authors found a way to make the high-friction ZZ edge superlubricious by reconstructing the (6,6) hexagon structure to the (5,7) azulene-like structure through thermal annealing in an inert gas environment. This will facilitate the realization of graphene-based superlubricity over a wide range of industrial applications in which avoiding the involvement of step edges is difficult.

10.
ACS Nano ; 17(3): 2497-2505, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36735233

RESUMEN

The mechanical performance and surface friction of graphene oxide (GO) were found to inversely depend on the number of layers. Here, we demonstrate the non-monotonic layer-dependence of the nanowear resistance of GO nanosheets deposited on a native silicon oxide substrate. As the thickness of GO increases from ∼0.9 nm to ∼14.5 nm, the nanowear resistance initially demonstrated a decreasing and then an increasing tendency with a critical number of layers of 4 (∼3.6 nm in thickness). This experimental tendency corresponds to a change of the underlying wear mode from the overall removal to progressive layer-by-layer removal. The phenomenon of overall removal disappeared as GO was deposited on an H-DLC substrate with a low surface energy, while the nanowear resistance of thicker GO layers was always higher. Combined with density functional theory calculations, the wear resistance of few-layer GO was found to correlate with the substrate's surface energy. This can be traced back to substrate-dependent adhesive strengths of GO, which correlated with the GO thickness originating from differences in the interfacial charge transfer. Our study proposes a strategy to improve the antiwear properties of 2D layered materials by tuning their own thickness and/or the interfacial interaction with the underlying substrate.

11.
J Am Chem Soc ; 145(9): 5536-5544, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36811399

RESUMEN

It is well-known that the electron nature of a solid in contact plays a predominant role in determining the many properties of the contact systems, but the general rules of electron coupling that govern interfacial friction remain an open issue for the surface/interface community. Here, density functional theory calculations were used to investigate the physical origins of friction of solid interfaces. It was found that interfacial friction can be inherently traced back to the electronic barrier to the change in the contact configuration of the joints in slip due to the resistance of energy level rearrangement leading to electron transfer, which applies for various interface types ranging from van der Waals, metallic, and ionic to covalent joints. The variation of the electron density accompanying contact conformation changes along the sliding pathways is defined to track the frictional energy dissipation process occurring in slip. The results demonstrate that the frictional energy landscapes evolve synchronously with responding charge density evolution along sliding pathways, yielding an explicitly linear dependence of frictional dissipation on electronic evolution. The correlation coefficient enables us to interpret the fundamental concept of shear strength. The present charge evolution model thereby provides insights into the classic hypothesis that the friction force scales with the real contact area. This may shed light on the intrinsic origin of friction at the electronic level, opening the way to the rational design of nanomechanical devices as well as the understanding of the natural faults.

12.
Rev Sci Instrum ; 93(12): 123706, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586888

RESUMEN

Inner stress that exists in most natural and artificial materials, such as rocks, coatings, glasses, and plastic products, has a significant impact on their tribological properties at any length scale. Here, we designed a bending-stress controllable micro-clamp that can be applied in a high-vacuum atomic force microscope with limited chamber space for the investigation of stress-dependent nanowear behavior. By accurately quantifying the bending degree of the sample in different directions, the mutual transformation and adjustment of tensile or compressive stress could be realized. The stability of the micro-clamp structure was further verified by simulating the bending deformation state of the sample through Ansys calculations. The maximum applied scratch area on the bended sample surface where the variation of bending-induced stress below 5% was defined by the Ansys simulations. The consistency of polyimide terephthalate (PET) wear inside this defined region under both bending-free and bending states verified the stability and reliability of micro-clamp. Finally, the designed micro-clamp was applied to study the effect of bending deformation on friction and wear of PET in the atomic force microscope tests, where the tensile stress generated with bending deformation was found to facilitate the nanowear of PET material sliding against a diamond probe.

13.
Opt Express ; 30(16): 29216-29233, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299101

RESUMEN

Mid-spatial-frequency (MSF) errors seriously damages the imaging performance of optical components. Path pattern is an important factor that affects the generation of MSF waviness in polishing. This paper proposes a versatile pseudo random tree-shaped path (RTSP) generation method imitating the growth rules of tree branch in nature, which can efficiently generate continuous, uniformly distributed and multi-directional paths on a specified surface. Furthermore, the effectiveness of RTSP to suppress MSF waviness is verified by numerical simulation and experimental results. Finally, the RTSP is applied to the polishing of Ti-6Al-4V titanium alloy mirror. Results indicate that grinding marks have been significantly removed, while no obvious MSF waviness is introduced.

14.
Langmuir ; 38(38): 11699-11706, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36109854

RESUMEN

The definition of atomic-scale contact is a very ambiguous issue owing to the discrete atomic arrangement, which hinders the development of contact theory and nano-tribological techniques. In this work, we studied the atomic-scale contact area and their correlations with friction force based on three distinct contact definitions (interatomic distance, force, and interfacial chemical bonds) by performing large-scale atomistic simulations on a typical ball-on-disk contact model. In the simulations, the measured contact areas defined by interatomic distance, force, and interfacial chemical bonds (referred as to Adist, Aforce, and Abond, respectively) are not equivalent at all, while we interestingly clarify that only Adist is consistent with the one calculated by continuum Hertz contact mechanics, and moreover, only Abond is proportional to the friction force indicating that Abond is the dominant one for determining materials' frictional behaviors. The above fundamental insights into the atomic-scale contact problems are useful to deeply understand the origins of tribological phenomena and contribute to the further prediction of atomic-scale friction.

15.
Sensors (Basel) ; 22(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36081145

RESUMEN

Carrying out status monitoring and fault-diagnosis research on cutter-wear status is of great significance for real-time understanding of the health status of Tunnel Boring Machine (TBM) equipment and reducing downtime losses. In this work, we proposed a new method to diagnose the abnormal wear state of the disc cutter by using brain-like artificial intelligence to process and analyze the vibration signal in the dynamic contact between the disc cutter and the rock. This method is mainly aimed at realizing the diagnosis and identification of the abnormal wear state of the cutter, and is not aimed at the accurate measurement of the wear amount. The author believes that when the TBM is operating at full power, the cutting forces are very high and the rock is successively broken, resulting in a complex circumstance, which is inconvenient to vibration signal acquisition and transmission. If only a small thrust is applied, to make the cutters just contact with the rock (less penetration), then the cutters will run more smoothly and suffer less environmental interference, which would be beneficial to apply the method proposed in this paper to detect the state of the cutters. A specific example was to use the frequency-domain characteristics of the periodic vibration waveform during the contact between the cutter and the granite to identify the wear status (including normal wear state, wear failure state, angled wear failure state) of the disc cutter through the artificial neural network, and the diagnosis accuracy rate is 90%.


Asunto(s)
Inteligencia Artificial , Vibración , Aprendizaje Automático , Percepción
16.
Nano Lett ; 22(14): 6018-6025, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35695465

RESUMEN

Atomically thin two-dimensional (2D) materials are excellent candidates for utilization as a solid lubricant or additive at all length scales from macro-scale mechanical devices to micro/nano-electromechanical systems (MEMS/NEMS). In such applications, wear resistance of ultrathin 2D materials is critical for sustained lubrication performance. Here, we investigated the wear of fluorinated graphene (FG) nanosheets deposited on silicon surfaces using atomic force microscopy (AFM) and discovered that the wear resistance of FG improves as the FG thickness decreases from 4.2 to 0.8 nm (corresponding to seven layers to single layer) and the surface energy of the substrate underneath the FG nanosheets increases. On the basis of density function theory (DFT) calculations, the negative correlation of wear resistance to FG thickness and the positive correlation to substrate surface energy could be explained with the degree of interfacial charge transfer between FG and substrate which affects the strength of FG adhesion to the substrate.

17.
ACS Appl Mater Interfaces ; 14(25): 29366-29376, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35710329

RESUMEN

Wet chemical etching is essential not only for processing silicon (Si) wafers but also for forming diverse structures, significantly promoting the development of the semiconductor industry. However, tight control of etched topography at the nanoscale and even atom-scale in a controllable and reproducible fashion can be hardly achieved in either laboratory research or industrial production, seriously hindering further enhancement of high-performance Si-based electronic devices. Herein, the roles of mechanically driven defects in wet etching were systematically investigated toward promoting controllable wet etching of monocrystalline Si. The role of antietching of mechanically driven amorphous Si (a-Si) and the role of promoting etching of distorted Si (including dislocations and stacking faults) were revealed in anisotropic or isotropic etchants. It was also found that the nucleation of nanocrystals in the a-Si area with increasing contact pressure can lead to deactivation of the antietching mask, and the required contact pressure for deactivation in KOH and tetramethyl ammonium hydroxide solutions was much higher than that in HF/HNO3 mixtures. The selective etching mechanisms for every defect including a-Si, distorted Si, and nanocrystals were further addressed down to the atom-scale based on the proposed dissolution model. This study provides insights into deeply understanding the role of defects in wet etching and pushes forward the idea of controllable wet chemical etching in the Si-based semiconductor industry.

18.
Front Chem ; 10: 852371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464217

RESUMEN

Tribochemical wear of contact materials is an important issue in science and engineering. Understanding the mechanisms of tribochemical wear at an atomic scale is favorable to avoid device failure, improve the durability of materials, and even achieve ultra-precision manufacturing. Hence, this article reviews some of the latest developments of tribochemical wear of typical materials at micro/nano-scale that are commonly used as solid lubricants, tribo-elements, or structural materials of the micro-electromechanical devices, focusing on their universal mechanisms based on the studies from experiments and numerical simulations. Particular focus is given to the fact that the friction-induced formation of interfacial bonding plays a critical role in the wear of frictional systems at the atomic scale.

19.
Front Chem ; 9: 672240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017822

RESUMEN

Mechanochemical reactions at the gallium nitride-alumina (GaN-Al2O3) interface at nanoscale offer a significant beneficial reference for the high-efficiency and low-destruction ultra-precision machining on GaN surface. Here, the mechanochemical reactions on oxide-free and oxidized GaN surfaces rubbed by the Al2O3 nanoasperity as a function of the ambient humidity were studied. Experimental results reveal that oxidized GaN exhibits a higher mechanochemical removal rate than that of oxide-free GaN over the relative humidity range of 3-80%. The mechanical activation in the mechanochemical reactions at the GaN-Al2O3 interface is well-described by the mechanically-assisted Arrhenius-type kinetics model. The analysis indicates that less external mechanical activation energy is required to initiate the mechanochemical atomic attrition on the oxidized GaN surface compared with the oxide-free GaN surface. These results may not only gain a deep understanding of the mechanochemical removal mechanism of GaN but also provide the basic knowledge for the optimization of the oxidation-assisted ultra-precision machining.

20.
Phys Chem Chem Phys ; 22(23): 12987-12995, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32475997

RESUMEN

Amorphous silicon (a-Si) is a type of common surface damages during the ultra-precision machining of monocrystalline Si. However, it is difficult to identify the amorphous damage of several nanometers by traditional detection methods, which severely hinders the performance improvement of Si-based products. In this study, ultrathin a-Si was found to act as a mask against etching in HF/HNO3 mixtures, resulting in the formation of protrusive hillocks. Reciprocating sliding on an atomic force microscope (AFM) was employed to simulate a material removal event in surface manufacturing. The effects of normal load, etching time and etchant concentration on selective etching were investigated to optimize the parameters for amorphous damage detection. The mechanisms for selective etching were further addressed based on high-resolution transmission electron microscopy (HRTEM) detection and comparative etching of different surface structures. Further analysis demonstrated that a lower dangling bond density of a-Si could result in the reduction of the dissolution rate, while deformed Si lattices, including stacking faults, dislocations and microcracks, could facilitate rapid selective etching. By the proposed selective etching, ultrathin amorphous damage and its spatial distributions can be rapidly identified with high resolution and low destruction. This study sheds new light on achieving a high-quality Si surface in ultra-precision machining.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...