Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 26(12): 108408, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38058301

RESUMEN

Canonical pyroptosis is type of programmed cell death depending on active caspase-1, and the inflammasome carries out caspase-1 activation. Here, we showed that docosahexaenoic acid (DHA) induced ovarian cancer cell deaths in caspase-1-dependent manner. DHA increased caspase-1 activity and led to interleukin-1ß secretion and gasdermin D cleavage while disulfiram inhibited DHA-induced cell death, suggesting that DHA triggered pyroptosis. Intriguingly, ASC, the molecule recruiting caspase-1 to inflammasome for activation, was dispensable for DHA-induced pyroptosis. Instead, we observed remarkable elevation in caspase-1 abundance concurrent with the activation of caspase-1 in DHA-treated cells. As ectopically overexpressing caspase-1 resulted in robust amount of active caspase-1, we reason that DHA activates caspase-1 and pyroptosis through the generation of excessive amount of caspase-1 protein. Mechanistically, DHA increased caspase-1 by specifically accelerating caspase-1 protein synthesis via the p38MAPK/Mnk1 signaling pathway. We have uncovered an unknown pyroptosis mechanism in which caspase-1-dependent pyroptosis can occur without the participation of ASC/inflammasome.

2.
World J Stem Cells ; 13(6): 659-669, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34249234

RESUMEN

BACKGROUND: Heat shock proteins (HSPs) are molecular chaperones that protect cells against cellular stresses or injury. However, it has been increasingly recognized that they also play crucial roles in regulating fundamental cellular processes. HSP20 has been implicated in cell proliferation, but conflicting studies have shown that it can either promote or suppress proliferation. The underlying mechanisms by which HSP20 regulates cell proliferation and pluripotency remain unexplored. While the effect of HSP20 on cell proliferation has been recognized, its role in inducing pluripotency in human-induced pluripotent stem cells (iPSCs) has not been addressed. AIM: To evaluate the efficacy of HSP20 overexpression in human iPSCs and evaluate the ability to promote cell proliferation. The purpose of this study was to investigate whether overexpression of HSP20 in iPSCs can increase pluripotency and regeneration. METHODS: We used iPSCs, which retain their potential for cell proliferation. HSP20 overexpression effectively enhanced cell proliferation and pluripotency. Overexpression of HSP20 in iPSCs was characterized by immunocytochemistry staining and real-time polymerase chain reaction. We also used cell culture, cell counting, western blotting, and flow cytometry analyses to validate HSP20 overexpression and its mechanism. RESULTS: This study demonstrated that overexpression of HSP20 can increase the pluripotency in iPSCs. Furthermore, by overexpressing HSP20 in iPSCs, we showed that HSP20 upregulated proliferation markers, induced pluripotent genes, and drove cell proliferation in a sirtuin 1 (SIRT1)-dependent manner. These data have practical applications in the field of stem cell-based therapies where the mass expansion of cells is needed to generate large quantities of stem cell-derived cells for transplantation purposes. CONCLUSION: We found that the overexpression of HSP20 enhanced the proliferation of iPSCs in a SIRT1-dependent manner. Herein, we established the distinct crosstalk between HSP20 and SIRT1 in regulating cell proliferation and pluripotency. Our study provides novel insights into the mechanisms controlling cell proliferation that can potentially be exploited to improve the expansion and pluripotency of human iPSCs for cell transplantation therapies. These results suggest that iPSCs overexpressing HSP20 exert regenerative and proliferative effects and may have the potential to improve clinical outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA