Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Womens Health ; 22(1): 365, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057587

RESUMEN

As heterogeneity of cervical squamous cell carcinoma (CSCC), prognosis assessment for CSCC patients remain challenging. To develop novel prognostic strategies for CSCC patients, associated biomarkers are urgently needed. This study aimed to cluster CSCC samples from a molecular perspective. CSCC expression data sets were obtained from The Cancer Genome Atlas and based on the accessed expression profile, a co-expression network was constructed with weighted gene co-expression network analysis to form different gene modules. Tumor microenvironment was evaluated using ESTIMATE algorithm, observing that the brown module was highly associated with tumor immunity. CSCC samples were clustered into three subtypes by consensus clustering based on gene expression profiles in the module. Gene set variation analysis showed differences in immune-related pathways among the three subtypes. CIBERSORT and single-sample gene set enrichment analysis analyses showed the difference in immune cell infiltration among subtype groups. Also, Human leukocyte antigen protein expression varied considerably among subtypes. Subsequently, univariate, Lasso and multivariate Cox regression analyses were performed on the genes in the brown module and an 8-gene prognostic model was constructed. Kaplan-Meier analysis illuminated that the low-risk group manifested a favorable prognosis, and receiver operating characteristic curve showed that the model has good predictive performance. qRT-PCR was used to examine the expression status of the prognosis-associated genes. In conclusion, this study identified three types of CSCC from a molecular perspective and established an effective prognostic model for CSCC, which will provide guidance for clinical subtype identification of CSCC and treatment of patients.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias del Cuello Uterino , Femenino , Humanos , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Estimación de Kaplan-Meier , Pronóstico , Microambiente Tumoral/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
2.
Plant Mol Biol ; 105(6): 625-635, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33481140

RESUMEN

KEY MESSAGE: IEF, a novel plasma plasma membrane protein, is important for exine formation in Arabidopsis. Exine, an important part of pollen wall, is crucial for male fertility. The major component of exine is sporopollenin which are synthesized and secreted by tapetum. Although sporopollenin synthesis has been well studied, the transportation of it remains elusive. To understand it, we analyzed the gene expression pattern in tapetal microdissection data, and investigated the potential transporter genes that are putatively regulated by ABORTED MICROSPORES (AMS). Among these genes, we identified IMPERFECTIVE EXINE FORMATION (IEF) that is important for exine formation. Compared to the wild type, ief mutants exhibit severe male sterility and pollen abortion, suggesting IEF is crucial for pollen development and male fertility. Using both scanning and transmission electron microscopes, we showed that exine structure was not well defined in ief mutant. The transient expression of IEF-GFP driven by the 35S promoter indicated that IEF-GFP was localized in plasma membrane. Furthermore, AMS can specifically activate the expression of promoterIEF:LUC in vitro, which suggesting AMS regulates IEF for exine formation. The expression of ATP-BINDING CASSETTE TRANSPORTER G26 (AGCB26) was not affected in ief mutants. In addition, SEM and TEM data showed that the sporopollenin deposition is more defective in abcg26/ief-2 than that of in abcg26, which suggesting that IEF is involved in an independent sporopollenin transportation pathway. This work reveal a novel gene, IEF regulated by AMS that is essential for exine formation.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fertilidad/fisiología , Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/crecimiento & desarrollo , Transporte Biológico , Biopolímeros/biosíntesis , Carotenoides/metabolismo , Fertilidad/genética , Regulación de la Expresión Génica de las Plantas , Polen , Nicotiana
3.
Front Plant Sci ; 11: 621338, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552112

RESUMEN

Magnesium (Mg) is an abundant and important cation in cells. Plants rely on Mg transporters to take up Mg from the soil, and then Mg is transported to anthers and other organs. Here, we showed that MGT6+/- plants display reduced fertility, while mgt6 plants are fertile. MGT6 is expressed in the anther at the early stages. Pollen mitosis and intine formation are impaired in aborted pollen grains (PGs) of MGT6+/- plants, which is similar to the defective pollen observed in mgt5 and mgt9 mutants. These results suggest that Mg deficiency leads to pollen abortion in MGT6+/- plants. Our data showed that mgt6 organs including buds develop significantly slower and mgt6 stamens accumulate a higher level of Mg, compared with wild-type (WT) and MGT6+/- plants. These results indicate that slower bud development allows mgt6 to accumulate sufficient amounts of Mg in the pollen, explaining why mgt6 is fertile. Furthermore, we found that mgt6 can restore fertility of mgt5, which has been reported to be male sterile due to defects in Mg transport from the tapetum to microspores and that an additional Mg supply can restore its fertility. Interestingly, mgt5 fertility is recovered when grown under short photoperiod conditions, which is a well-known factor regulating plant fertility. Taken together, these results demonstrate that slow development is a general mechanism to restore mgts fertility, which allows other redundant magnesium transporter (MGT) members to transport sufficient Mg for pollen formation.

4.
Plant Physiol ; 181(2): 645-655, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31345954

RESUMEN

The timely release of mature pollen following anther dehiscence is essential for reproduction in flowering plants. AUXIN RESPONSE FACTOR17 (ARF17) plays a crucial role in pollen wall pattern formation, tapetum development, and auxin signal transduction in anthers. Here, we showed that ARF17 is also involved in anther dehiscence. The Arabidopsis (Arabidopsis thaliana) arf17 mutant exhibits defective endothecium lignification, which leads to defects in anther dehiscence. The expression of MYB108, which encodes a transcription factor important for anther dehiscence, was dramatically down-regulated in the flower buds of arf17 Chromatin immunoprecipitation assays and electrophoretic mobility shift assays showed ARF17 directly binds to the MYB108 promoter. In an ARF17-GFP transgenic line, in which ARF17-GFP fully complements the arf17 phenotype, ARF17-GFP was observed in the endothecia at anther stage 11. The GUS signal driven by the MYB108 promoter was also detected in endothecia at late anther stages in transgenic plants expressing promoterMYB108::GUS Thus, the expression pattern of both ARF17 and MYB108 is consistent with the function of these genes in anther dehiscence. Furthermore, the expression of MYB108 driven by the ARF17 promoter successfully restored the defects in anther dehiscence of arf17 These results demonstrated that ARF17 regulates the expression of MYB108 for anther dehiscence. Together with its function in microcytes and tapeta, ARF17 likely coordinates the development of different sporophytic cell layers in anthers. The ARF17-MYB108 pathway involved in regulating anther dehiscence is also discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Flores/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Lignina/metabolismo
5.
Colloids Surf B Biointerfaces ; 169: 422-428, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29843116

RESUMEN

In this study, water-soluble fluorescent carbon nanodots (CNDs) were directly injected into the leaf of nicotiana tabacum. With the help of UV-to-blue light conversion nanomaterial, the photosynthetic rate of the leaf was improved 18% upon additional 6 W UV irradiation. The photostability and toxicity of different kinds of CNDs were discussed. The results showed that CNDs functionalized with NH2-groups on their surfaces could maintain good fluorescence in plant leaf, and CNDs with complex surface groups tended to have high toxicity to the plant. The NH2-functionalized CNDs with non-toxicity and good photostability were used as in vivo light conversion material for direct utilization of UV light in the solar energy.


Asunto(s)
Carbono/química , Colorantes Fluorescentes/química , Nanopartículas/química , Nicotiana/química , Rayos Ultravioleta , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...