Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6625, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857619

RESUMEN

DddA-derived cytosine base editors (DdCBEs) greatly facilitated the basic and therapeutic research of mitochondrial DNA mutation diseases. Here we devise a saturated spacer library and successfully identify seven DddA homologs by performing high-throughput sequencing based screen. DddAs of Streptomyces sp. BK438 and Lachnospiraceae bacterium sunii NSJ-8 display high deaminase activity with a strong GC context preference, and DddA of Ruminococcus sp. AF17-6 is highly compatible to AC context. We also find that different split sites result in wide divergence on off-target activity and context preference of DdCBEs derived from these DddA homologs. Additionally, we demonstrate the orthogonality between DddA and DddIA, and successfully minimize the nuclear off-target editing by co-expressing corresponding nuclear-localized DddIA. The current study presents a comprehensive and unbiased strategy for screening and characterizing dsDNA cytidine deaminases, and expands the toolbox for mtDNA editing, providing additional insights for optimizing dsDNA base editors.


Asunto(s)
Edición Génica , Mitocondrias , Mitocondrias/metabolismo , Mutación , ADN Mitocondrial/genética , Citidina Desaminasa/genética , Sistemas CRISPR-Cas , Citosina
2.
Mol Ther Nucleic Acids ; 34: 102028, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37744175

RESUMEN

Double-stranded DNA-specific cytidine deaminase (DddA) base editors hold great promise for applications in bio-medical research, medicine, and biotechnology. Strict sequence preference on spacing region presents a challenge for DddA editors to reach their full potential. To overcome this sequence-context constraint, we analyzed a protein dataset and identified a novel DddAtox homolog from Ruminococcus sp. AF17-6 (RsDddA). We engineered RsDddA for mitochondrial base editing in a mammalian cell line and demonstrated RsDddA-derived cytosine base editors (RsDdCBE) offered a broadened NC sequence compatibility and exhibited robust editing efficiency. Moreover, our results suggest the average frequencies of mitochondrial genome-wide off-target editing arising from RsDdCBE are comparable to canonical DdCBE and its variants.

3.
Cell Prolif ; 56(8): e13410, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36722312

RESUMEN

Muscle stem cells are required for the homeostasis and regeneration of mammalian skeletal muscles. It has been reported that RNA N6-methyladenosine (m6A) modifications play a pivotal role in muscle development and regeneration. Nevertheless, we know little about which m6A reader regulates mammalian muscle stem cells. Here, we discovered that the m6A reader Ythdc1 is indispensable for mouse skeletal muscle regeneration and proliferation of muscle stem cells. In the absence of Ythdc1, Muscle stem cells in adult mice are unable to exit from quiescence. Mechanistically, Ythdc1 binds to m6A-modified Pi4k2a and Pi4kb mRNAs to regulate their alternative splicing and thus PI4K-Akt-mTOR signalling. Ythdc1-null muscle stem cells show a deficiency in phosphatidylinositol (PI) 3,4,5-trisphosphate, phospho-Akt and phospho-S6, which correlates with a failure in exit from quiescence. Our findings connect dynamic RNA methylation to the regulation of PI4K-Akt-mTOR signalling during stem cell proliferation and adult tissue regeneration.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Proliferación Celular , Músculos/metabolismo , Mamíferos/metabolismo
5.
Mol Ther Nucleic Acids ; 27: 73-80, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34938607

RESUMEN

Critical mutations of mitochondrial DNA (mtDNA) generally lead to maternally inheritable diseases that affect multiple organs and systems; however, it was difficult to alter mtDNA in mammalian cells to intervene in or cure mitochondrial disorders. Recently, the discovery of DddA-derived cytosine base editor (DdCBE) enabled the precise manipulation of mtDNA. To test its feasibility for in vivo use, we selected several sites in mouse mtDNA as DdCBE targets to resemble the human pathogenic mtDNA G-to-A mutations. The efficiency of DdCBE-mediated mtDNA editing was first screened in mouse Neuro-2A cells and DdCBE pairs with the best performance were chosen for in vivo targeting. Microinjection of the mRNAs of DdCBE halves in the mouse zygotes or 2-cell embryo successfully generated edited founder mice with a base conversion rate ranging from 2.48% to 28.51%. When backcrossed with wild-type male mice, female founders were able to transmit the mutations to their offspring with different mutation loads. Off-target analyses demonstrated a high fidelity for DdCBE-mediated base editing in mouse mtDNA both in vitro and in vivo. Our study demonstrated that the DdCBE is feasible for generation of mtDNA mutation models to facilitate disease study and for potential treatment of mitochondrial disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...