Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Expert Rev Mol Diagn ; : 1-6, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526221

RESUMEN

BACKGROUND: Noninvasive prenatal screening (NIPS) has shown good performance in screening common aneuploidies. However, its performance in detecting fetal sex chromosome aneuploidies (SCAs) needs to be evaluated in a large cohort. RESEARCH DESIGN AND METHODS: In this retrospective observation, a total of 116,862 women underwent NIPS based on DNA nanoball sequencing from 2015 to 2022. SCAs were diagnosed based on karyotyping or chromosomal microarray analysis (CMA). Among them, 2,084 singleton pregnancies received karyotyping and/or CMA. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of NIPS for fetal SCAs were evaluated. RESULTS: The sensitivity was 97.7% (95%CI, 87.7-99.9), 87.3% (95% CI, 76.5-94.4), 96.1% (95%CI, 86.5-99.5), and 95.7% (95% CI, 78.1-99.9), the PPV was 25.8% (95%CI, 19.2-33.2), 80.9% (95%CI, 69.5-89.4), 79.0% (95%CI, 66.8-88.3), and 53.7% (95%CI, 37.4-69.3) for 45,X, 47,XXY, 47,XXX, and 47,XYY, respectively. The specificity was 94.1% (95%CI, 93.0-95.1) for 45,X, and more than 99.0% for sex chromosome trisomy (SCT). The NPV was over 99.0% for all. CONCLUSIONS: NIPS screening for fetal SCAs has high sensitivity, specificity and NPV. The PPV of SCAs was moderate, but that of 45,X was lower than that of SCTs. Invasive prenatal diagnosis should be recommended for high-risk patients.

2.
New Phytol ; 240(6): 2419-2435, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743547

RESUMEN

Crop yield must increase to achieve food security in the face of a growing population and environmental deterioration. Grain size is a prime breeding target for improving grain yield and quality in crop. Here, we report that autophagy emerges as an important regulatory pathway contributing to grain size and quality in rice. Mutations of rice Autophagy-related 9b (OsATG9b) or OsATG13a causes smaller grains and increase of chalkiness, whereas overexpression of either promotes grain size and quality. We also demonstrate that THOUSAND-GRAIN WEIGHT 6 (TGW6), a superior allele that regulates grain size and quality in the rice variety Kasalath, interacts with OsATG8 via the canonical Atg8-interacting motif (AIM), and then is recruited to the autophagosome for selective degradation. In consistent, alteration of either OsATG9b or OsATG13a expression results in reciprocal modulation of TGW6 abundance during grain growth. Genetic analyses confirmed that knockout of TGW6 in either osatg9b or osatg13a mutants can partially rescue their grain size defects, indicating that TGW6 is one of the substrates for autophagy to regulate grain development. We therefore propose a potential framework for autophagy in contributing to grain size and quality in crops.


Asunto(s)
Oryza , Oryza/fisiología , Fitomejoramiento , Grano Comestible/genética , Autofagia
3.
Plant Physiol ; 193(1): 855-873, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37279567

RESUMEN

Banana (Musa spp.) fruits, as typical tropical fruits, are cold sensitive, and lower temperatures can disrupt cellular compartmentalization and lead to severe browning. How tropical fruits respond to low temperature compared to the cold response mechanisms of model plants remains unknown. Here, we systematically characterized the changes in chromatin accessibility, histone modifications, distal cis-regulatory elements, transcription factor binding, and gene expression levels in banana peels in response to low temperature. Dynamic patterns of cold-induced transcripts were generally accompanied by concordant chromatin accessibility and histone modification changes. These upregulated genes were enriched for WRKY binding sites in their promoters and/or active enhancers. Compared to banana peel at room temperature, large amounts of banana WRKYs were specifically induced by cold and mediated enhancer-promoter interactions regulating critical browning pathways, including phospholipid degradation, oxidation, and cold tolerance. This hypothesis was supported by DNA affinity purification sequencing, luciferase reporter assays, and transient expression assay. Together, our findings highlight widespread transcriptional reprogramming via WRKYs during banana peel browning at low temperature and provide an extensive resource for studying gene regulation in tropical plants in response to cold stress, as well as potential targets for improving cold tolerance and shelf life of tropical fruits.


Asunto(s)
Conservación de Alimentos , Frutas , Musa , Musa/genética , Musa/fisiología , Frutas/fisiología , Frío , Histonas/metabolismo , Cromatina , Proteínas de Plantas/metabolismo , Elementos de Facilitación Genéticos , Código de Histonas , Factores de Transcripción/metabolismo , Lípidos de la Membrana/metabolismo
4.
New Phytol ; 237(2): 684-697, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36263708

RESUMEN

Protein-targeting technologies represent essential approaches in biological research. Protein knockdown tools developed recently in mammalian cells by exploiting natural degradation mechanisms allow for precise determination of protein function and discovery of degrader-type drugs. However, no method to directly target endogenous proteins for degradation is currently available in plants. Here, we describe a novel method for targeted protein clearance by engineering an autophagy receptor with a binder to provide target specificity and an ATG8-binding motif (AIM) to link the targets to nascent autophagosomes, thus harnessing the autophagy machinery for degradation. We demonstrate its specificity and broad potentials by degrading various fluorescence-tagged proteins, including cytosolic mCherry, the nucleus-localized bZIP transcription factor TGA5, and the plasma membrane-anchored brassinosteroid receptor BRI1, as well as fluorescence-coated peroxisomes, using a tobacco-based transient expression system. Stable expression of AIM-based autophagy receptors in Arabidopsis further confirms the feasibility of this approach in selective autophagy of endogenous proteins. With its wide substrate scope and its specificity, our concept of engineered AIM-based selective autophagy could provide a convenient and robust research tool for manipulating endogenous proteins in plants and may open an avenue toward degradation of cytoplasmic components other than proteins in plant research.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagosomas/metabolismo , Autofagia , Plantas/metabolismo , Proteínas Portadoras/metabolismo , Arabidopsis/metabolismo , Mamíferos , Proteínas de Arabidopsis/metabolismo
5.
Plant Commun ; 4(2): 100459, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36203361

RESUMEN

A key event that follows pathogen recognition by a resistance (R) protein containing an NB-ARC (nucleotide-binding adaptor shared by Apaf-1, R proteins, and Ced-4) domain is hypersensitive response (HR)-type cell death accompanied by accumulation of reactive oxygen species and nitric oxide. However, the integral mechanisms that underlie this process remain relatively opaque. Here, we show that a gain-of-function mutation in the NB-ARC protein RLS1 (Rapid Leaf Senescence 1) triggers high-light-dependent HR-like cell death in rice. The RLS1-mediated defense response is largely independent of salicylic acid accumulation, NPR1 (Nonexpressor of Pathogenesis-Related Gene 1) activity, and RAR1 (Required for Mla12 Resistance 1) function. A screen for suppressors of RLS1 activation identified RMC (Root Meander Curling) as essential for the RLS1-activated defense response. RMC encodes a cysteine-rich receptor-like secreted protein (CRRSP) and functions as an RLS1-binding partner. Intriguingly, their co-expression resulted in a change in the pattern of subcellular localization and was sufficient to trigger cell death accompanied by a decrease in the activity of the antioxidant enzyme APX1. Collectively, our findings reveal an NB-ARC-CRRSP signaling module that modulates oxidative state, the cell death process, and associated immunity responses in rice.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Cisteína , Proteínas de Plantas/metabolismo , Muerte Celular/genética
6.
Nat Genet ; 54(12): 1972-1982, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36471073

RESUMEN

Preharvest sprouting (PHS) due to lack of seed dormancy seriously threatens crop production worldwide. As a complex quantitative trait, breeding of crop cultivars with suitable seed dormancy is hindered by limited useful regulatory genes. Here by repeatable phenotypic characterization of fixed recombinant individuals, we report a quantitative genetic locus, Seed Dormancy 6 (SD6), from aus-type rice, encoding a basic helix-loop-helix (bHLH) transcription factor, which underlies the natural variation of seed dormancy. SD6 and another bHLH factor inducer of C-repeat binding factors expression 2 (ICE2) function antagonistically in controlling seed dormancy by directly regulating the ABA catabolism gene ABA8OX3, and indirectly regulating the ABA biosynthesis gene NCED2 via OsbHLH048, in a temperature-dependent manner. The weak-dormancy allele of SD6 is common in cultivated rice but undergoes negative selection in wild rice. Notably, by genome editing SD6 and its wheat homologs, we demonstrated that SD6 is a useful breeding target for alleviating PHS in cereals under field conditions.


Asunto(s)
Oryza , Latencia en las Plantas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Oryza/genética , Latencia en las Plantas/genética
7.
Front Genet ; 13: 999442, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299587

RESUMEN

Skewed XCI plays an important role in the phenotypic heterogeneities of many X-linked disorders, even involving in diseases caused by XCI-escaping genes. DDX3X-related intellectual disability is more common in females and less common in males, who usually inherit from unaffected heterozygous mothers. As an X inactivation (XCI) escaping gene, the role of skewed XCI in the phenotype of DDX3X mutant female is unknown. Here we reported a DDX3X: c.694_711dup18 de novo heterozygous mutation in a female with intellectual disability on the maternal X chromosome on the basis of SNPs detected by PCR-sanger sequencing. AR assay revealed that the maternal mutant X chromosome was extremely inactivated in the proband. Using RNA sequencing and whole-exome sequencing, we quantified allelic read counts and allele-specific expression, and confirmed that the mutant X chromosome was inactive. Further, we verified that the mutant DDX3X allele had a lower expression level by RNA sequencing and RT-PCR, and the normal and mutated DDX3X expression accounted for respectively 70% and 30% of total. In conclusion, we found a symptomatic female with extreme skewing XCI in the DDX3X mutant allele. It was discovered that XCI in the mutant allele was insufficient to reverse the phenotype of DDX3X-related neurodevelopmental disorder. It contributed to a better understanding of the role of skewed XCI in phenotypic differences, which can aid in the genetic counseling and prenatal diagnosis of disorders in females with DDX3X defects.

8.
Plant Physiol ; 190(2): 1526-1542, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35866684

RESUMEN

Identifying trait-associated genes is critical for rice (Oryza sativa) improvement, which usually relies on map-based cloning, quantitative trait locus analysis, or genome-wide association studies. Here we show that trait-associated genes tend to form modules within rice gene co-expression networks, a feature that can be exploited to discover additional trait-associated genes using reverse genetics. We constructed a rice gene co-expression network based on the graphical Gaussian model using 8,456 RNA-seq transcriptomes, which assembled into 1,286 gene co-expression modules functioning in diverse pathways. A number of the modules were enriched with genes associated with agronomic traits, such as grain size, grain number, tiller number, grain quality, leaf angle, stem strength, and anthocyanin content, and these modules are considered to be trait-associated gene modules. These trait-associated gene modules can be used to dissect the genetic basis of rice agronomic traits and to facilitate the identification of trait genes. As an example, we identified a candidate gene, OCTOPUS-LIKE 1 (OsOPL1), a homolog of the Arabidopsis (Arabidopsis thaliana) OCTOPUS gene, from a grain size module and verified it as a regulator of grain size via functional studies. Thus, our network represents a valuable resource for studying trait-associated genes in rice.


Asunto(s)
Oryza , Antocianinas/metabolismo , Grano Comestible/genética , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Oryza/genética , Oryza/metabolismo , Sitios de Carácter Cuantitativo/genética
9.
Mol Plant ; 15(2): 293-307, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34562665

RESUMEN

Plant hormone cytokinin signals through histidine-aspartic acid (H-D) phosphorelay to regulate plant growth and development. While it is well known that the phosphorelay involves histidine kinases, histidine phosphotransfer proteins (HPs), and response regulators (RRs), how this process is regulated by external components remains unknown. Here we demonstrate that protein phosphatase with kelch-like domains (PPKL1), known as a signaling component of steroid hormone brassinosteroid, is actually a cryptic inhibitor of cytokinin phosphorelay in rice (Oryza sativa). Mutation at a specific amino acid D364 of PPKL1 activates cytokinin response and thus enlarges grain size in a semi-dominant mutant named s48. Overexpression of PPKL1 containing D364, either with the deletion of the phosphatase domain or not, rescues the s48 mutant phenotype. PPKL1 interacts with OsAHP2, one of authentic HPs, and D364 resides in a region resembling the receiver domain of RRs. Accordingly, PPKL1 can utilize D364 to suppress OsAHP2-to-RR phosphorelay, whereas mutation of D364 abolishes the effect. This function of PPKL1 is independent of the phosphatase domain that is required for brassinosteroid signaling. Importantly, editing of the D364-residential region produces a diversity of semi-dominant mutations associated with variously increased grain sizes. Further screening of the edited plants enables the identification of two genotypes that confer significantly improved grain yield. Collectively, our study uncovers a noncanonical cytokinin signaling suppressor and provides a robust tool for seed rational design.


Asunto(s)
Citocininas , Oryza , Citocininas/metabolismo , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Nat Plants ; 7(8): 1108-1118, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34226689

RESUMEN

Complex antagonistic interactions between abscisic acid (ABA) and brassinosteroid (BR) signalling pathways have been widely documented. However, whether or how ABA interacts synergistically with BR in plants remains to be elucidated. Here, we report that low, but not high, concentration of ABA increases lamina joint inclination of rice seedling, which requires functional BR biosynthesis and signalling. Transcriptome analyses confirm that about 60% of low-concentration ABA early response genes can be regulated by BR in the same directions. ABA activates BR signal in a fast, limited and short-term manner and the BR-biosynthesis regulatory gene, OsGSR1, plays a key role during this process, whose expression is induced slightly by ABA through transcriptional factor ABI3. Moreover, the early short-term BR signal activation is also important for ABA-mediated salt stress tolerance. Intriguingly, the process and effect of short-term BR signal activation were covered by high concentration of ABA, implying adaptive mechanisms existed in plants to cope with varying degrees of stress.


Asunto(s)
Ácido Abscísico/metabolismo , Adaptación Fisiológica/genética , Brasinoesteroides/metabolismo , Oryza/crecimiento & desarrollo , Oryza/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción
11.
Cell ; 184(13): 3542-3558.e16, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34051138

RESUMEN

Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.


Asunto(s)
Ecotipo , Variación Genética , Genoma de Planta , Oryza/genética , Adaptación Fisiológica/genética , Agricultura , Domesticación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Estructural del Genoma , Anotación de Secuencia Molecular , Fenotipo
12.
Mol Plant ; 14(3): 517-529, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33316467

RESUMEN

The coordinated utilization of nitrogen (N) and phosphorus (P) is vital for plants to maintain nutrient balance and achieve optimal growth. Previously, we revealed a mechanism by which nitrate induces genes for phosphate utilization; this mechanism depends on NRT1.1B-facilitated degradation of cytoplasmic SPX4, which in turn promotes cytoplasmic-nuclear shuttling of PHR2, the central transcription factor of phosphate signaling, and triggers the nitrate-induced phosphate response (NIPR) and N-P coordinated utilization in rice. In this study, we unveiled a fine-tuning mechanism of NIPR in the nucleus regulated by Highly Induced by Nitrate Gene 1 (HINGE1, also known as RLI1), a MYB-transcription factor closely related to PHR2. RLI1/HINGE1, which is transcriptionally activated by PHR2 under nitrate induction, can directly activate the expression of phosphate starvation-induced genes. More importantly, RLI1/HINGE1 competes with PHR2 for binding to its repressor proteins in the nucleus (SPX proteins), and consequently releases PHR2 to further enhance phosphate response. Therefore, RLI1/HINGE1 amplifies the phosphate response in the nucleus downstream of the cytoplasmic SPX4-PHR2 cascade, thereby enabling fine-tuning of N-P balance when nitrate supply is sufficient.


Asunto(s)
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo
13.
Plant Cell ; 32(7): 2292-2306, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32409321

RESUMEN

Maintaining stable, high yields under fluctuating environmental conditions is a long-standing goal of crop improvement but is challenging due to internal trade-off mechanisms, which are poorly understood. Here, we identify ARGONAUTE2 (AGO2) as a candidate target for achieving this goal in rice (Oryza sativa). Overexpressing AGO2 led to a simultaneous increase in salt tolerance and grain length. These benefits were achieved via the activation of BIG GRAIN3 (BG3), encoding a purine permease potentially involved in cytokinin transport. AGO2 can become enriched on the BG3 locus and alter its histone methylation level, thus promoting BG3 expression. Cytokinin levels decreased in shoots but increased in roots of AGO2-overexpressing plants. While bg3 knockout mutants were hypersensitive to salt stress, plants overexpressing BG3 showed strong salt tolerance and large grains. The knockout of BG3 significantly reduced grain length and salt tolerance in AGO2-overexpressing plants. Both genes were transcriptionally suppressed by salt treatment. Salt treatment markedly increased cytokinin levels in roots but decreased them in shoots, resulting in a hormone distribution pattern similar to that in AGO2-overexpressing plants. These findings highlight the critical roles of the spatial distribution of cytokinins in both stress responses and grain development. Therefore, optimizing cytokinin distribution represents a promising strategy for improving both grain yield and stress tolerance in rice.


Asunto(s)
Citocininas/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Tolerancia a la Sal/fisiología , Semillas/fisiología , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Mutación , Oryza/efectos de los fármacos , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
14.
Plant Cell ; 32(5): 1397-1413, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32102844

RESUMEN

Maize (Zea mays) is one of the most important crops in the world. However, few agronomically important maize genes have been cloned and used for trait improvement, due to its complex genome and genetic architecture. Here, we integrated multiplexed CRISPR/Cas9-based high-throughput targeted mutagenesis with genetic mapping and genomic approaches to successfully target 743 candidate genes corresponding to traits relevant for agronomy and nutrition. After low-cost barcode-based deep sequencing, 412 edited sequences covering 118 genes were precisely identified from individuals showing clear phenotypic changes. The profiles of the associated gene-editing events were similar to those identified in human cell lines and consequently are predictable using an existing algorithm originally designed for human studies. We observed unexpected but frequent homology-directed repair through endogenous templates that was likely caused by spatial contact between distinct chromosomes. Based on the characterization and interpretation of gene function from several examples, we demonstrate that the integration of forward and reverse genetics via a targeted mutagenesis library promises rapid validation of important agronomic genes for crops with complex genomes. Beyond specific findings, this study also guides further optimization of high-throughput CRISPR experiments in plants.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Genes de Plantas , Mutagénesis/genética , Carácter Cuantitativo Heredable , Zea mays/genética , Secuencia de Bases , Reparación del ADN/genética , Edición Génica , Mutación/genética , Plantas Modificadas Genéticamente , Plásmidos/genética , ARN Guía de Kinetoplastida/genética , Reproducibilidad de los Resultados , Moldes Genéticos , Transformación Genética
15.
Plant Biotechnol J ; 18(1): 172-184, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31161713

RESUMEN

Salinity is an important environmental factor that adversely impacts crop growth and productivity. Malate dehydrogenases (MDHs) catalyse the reversible interconversion of malate and oxaloacetate using NAD(H)/NADP(H) as a cofactor and regulate plant development and abiotic stress tolerance. Vitamin B6 functions as an essential cofactor in enzymatic reactions involved in numerous cellular processes. However, the role of plastidial MDH in rice (Oryza sativa) in salt stress response by altering vitamin B6 content remains unknown. In this study, we identified a new loss-of-function osmdh1 mutant displaying salt stress-tolerant phenotype. The OsMDH1 was expressed in different tissues of rice plants including leaf, leaf sheath, panicle, glume, bud, root and stem and was induced in the presence of NaCl. Transient expression of OsMDH1-GFP in rice protoplasts showed that OsMDH1 localizes to chloroplast. Transgenic rice plants overexpressing OsMDH1 (OsMDH1OX) displayed a salt stress-sensitive phenotype. Liquid chromatography-mass spectrometry (LC-MS) metabolic profiling revealed that the amount of pyridoxine was significantly reduced in OsMDH1OX lines compared with the NIP plants. Moreover, the pyridoxine content was higher in the osmdh1 mutant and lower in OsMDH1OX plants than in the NIP plants under the salt stress, indicating that OsMDH1 negatively regulates salt stress-induced pyridoxine accumulation. Furthermore, genome-wide RNA-sequencing (RNA-seq) analysis indicated that ectopic expression of OsMDH1 altered the expression level of genes encoding key enzymes of the vitamin B6 biosynthesis pathway, possibly reducing the level of pyridoxine. Together, our results establish a novel, negative regulatory role of OsMDH1 in salt stress tolerance by affecting vitamin B6 content of rice tissues.


Asunto(s)
Malato Deshidrogenasa/fisiología , Oryza/enzimología , Proteínas de Plantas/fisiología , Estrés Fisiológico , Vitamina B 6/análisis , Regulación de la Expresión Génica de las Plantas , NAD , Oryza/química , Plantas Modificadas Genéticamente , Cloruro de Sodio
16.
Plant Physiol ; 181(3): 1295-1313, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31431512

RESUMEN

Most characterized plant resistance proteins belong to the nucleotide-binding domain and Leu-rich repeat-containing (NLR) family. NLRs are present in an auto-inhibited state in the absence of specific pathogens, while gain-of-function mutations in NLRs usually cause autoimmunity. Here, we show that a gain-of-function mutation, weaker defense (wed), which caused a Phe-to-Leu substitution in the nucleotide-binding domain of a typical NLR in rice (Oryza sativa), led to enhanced susceptibility to Xanthomonas oryzae pv. Oryzae The unexpected accumulation of salicylic acid (SA), along with downregulation of NONEXPRESSOR OF PR1 (NPR1), in wed indicates the potential presence of a feedback regulation loop of SA biosynthesis in rice. Epistasis analyses illustrated that SA accumulation and the NLR-associated components RAR1, OsRac1, and PhyB are dispensable for the wed phenotypes. Intriguingly, besides pattern-triggered immunity, effector-triggered immunity conferred by different resistance proteins, including Xa3/Xa26, Xa4, and Xa21, was also disturbed by wed to a certain extent, indicating the existence of shared regulatory mechanisms for various defense systems. The identification of wed therefore provides a unique system for genetic dissection of shared immune signaling pathways activated by different types of immune receptors.


Asunto(s)
Oryza/metabolismo , Oryza/microbiología , Proteínas de Plantas/metabolismo , Proteínas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas Repetidas Ricas en Leucina , Mutación/genética , Oryza/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas/genética , Xanthomonas/patogenicidad
18.
Nat Plants ; 5(4): 401-413, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30911122

RESUMEN

To ensure high crop yields in a sustainable manner, a comprehensive understanding of the control of nutrient acquisition is required. In particular, the signalling networks controlling the coordinated utilization of the two most highly demanded mineral nutrients, nitrogen and phosphorus, are of utmost importance. Here, we reveal a mechanism by which nitrate activates both phosphate and nitrate utilization in rice (Oryza sativa L.). We show that the nitrate sensor NRT1.1B interacts with a phosphate signalling repressor SPX4. Nitrate perception strengthens the NRT1.1B-SPX4 interaction and promotes the ubiquitination and degradation of SPX4 by recruiting NRT1.1B interacting protein 1 (NBIP1), an E3 ubiquitin ligase. This in turn allows the key transcription factor of phosphate signalling, PHR2, to translocate to the nucleus and initiate the transcription of phosphorus utilization genes. Interestingly, the central transcription factor of nitrate signalling, NLP3, is also under the control of SPX4. Thus, nitrate-triggered degradation of SPX4 activates both phosphate- and nitrate-responsive genes, implementing the coordinated utilization of nitrogen and phosphorus.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Nitrógeno/metabolismo , Oryza/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Nitratos/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(12): 3174-3179, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432165

RESUMEN

Crops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease because these loci typically confer resistance to diverse races of a pathogen or even multiple species of pathogens. Despite their importance, only a few crop broad-spectrum resistance loci have been reported. Here, we report the identification and characterization of the rice bsr-k1 (broad-spectrum resistance Kitaake-1) mutant, which confers broad-spectrum resistance against Magnaporthe oryzae and Xanthomonas oryzae pv oryzae with no major penalty on key agronomic traits. Map-based cloning reveals that Bsr-k1 encodes a tetratricopeptide repeats (TPRs)-containing protein, which binds to mRNAs of multiple OsPAL (OsPAL1-7) genes and promotes their turnover. Loss of function of the Bsr-k1 gene leads to accumulation of OsPAL1-7 mRNAs in the bsr-k1 mutant. Furthermore, overexpression of OsPAL1 in wild-type rice TP309 confers resistance to M. oryzae, supporting the role of OsPAL1 Our discovery of the bsr-k1 allele constitutes a significant conceptual advancement and provides a valuable tool for breeding broad-spectrum resistant rice.


Asunto(s)
Oryza/fisiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Unión al ARN/genética , Citoplasma/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Magnaporthe/patogenicidad , Mutación , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Dominios Proteicos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencias Repetitivas de Aminoácido , Xanthomonas/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...