Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Ultrasonics ; 142: 107361, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38880033

RESUMEN

Ultrasonic single mode excitation methods, mode separation algorithms and damage detection applications all require the calculation of the dispersion characteristics of the waveguide. However, existing dispersion calculation methods are mainly applicable to straight-axis waveguides. Therefore, in this paper, a novel semi-analytical finite element method in cylindrical coordinates (SAFEM-CC) is established and we focus on the dispersion characteristics of arc-axis waveguides. The cross-section of the waveguide can have arbitrary complex shapes, and the correctness of this method is verified by the finite element eigenfrequency method. At the same time, this paper takes the example of an arc-axis structure with a square cross-section and investigates the convergence of SAFEM-CC under different numbers of elements, element types, and element orders. This paper also establishes a finite element simulation model to study the waveform transmission law over a wide frequency range and the wave amplitude distribution law within the cross-section of arc-axis waveguides. The dispersion characteristics of arc-axis waveguides at different radii are also investigated. Finally, the correctness of the proposed method and the dispersion characteristics of arc-axis waveguides are verified by a large number of experiments. The main conclusions are as follows: the waveform transmission laws of the guided wave in arc-axis waveguides at each frequency agree with the dispersion curve; the theoretical wavestructure gives the distribution law of the amplitude within the cross-section; when the axis is arc, the displacement of the wavestructure on the inner and outer sides does not have symmetry, and the difference between the left and right sides gradually increases as the radius decreases.

2.
Bioorg Med Chem ; 107: 117760, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38762978

RESUMEN

Oncolytic peptides represented potential novel candidates for anticancer treatments especially drug-resistant cancer cell lines. One of the most promising and extensively studied is LTX-315, which is considered as the first in class oncolytic peptide and has entered phase I/II clinical trials. Nevertheless, the shortcomings including poor proteolytic stability, moderate anticancer durability and high synthesis costs may hinder the widespread clinical applications of LTX-315. In order to reduce the synthesis costs, as well as develop derivatives possessing both high protease-stability and durable anticancer efficiency, twenty LTX-315-based derived-peptides were designed and efficiently synthesized. Especially, through solid-phase S-alkylation, as well as the optimized peptide cleavage condition, the derived peptides could be prepared with drastically reduced synthesis cost. The in vitro anticancer efficiency, serum stability, anticancer durability, anti-migration activity, and hemolysis effect were systematically investigated. It was found that derived peptide MS-13 exhibited comparable anticancer efficiency and durability to those of LTX-315. Strikingly, the D-type peptide MS-20, which is the enantiomer of MS-13, was demonstrated to possess significantly high proteolytic stability and sustained anticancer durability. In general, the cost-effective synthesis and stability-guided structural optimizations were conducted on LTX-315, affording the highly hydrolysis resistant MS-20 which possessed durable anticancer activity. Meanwhile, this study also provided a reliable reference for the future optimization of anticancer peptides through the solid-phase S-alkylation and L-type to D-type amino acid substitutions.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Movimiento Celular/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Hemólisis/efectos de los fármacos , Oligopéptidos
3.
Int Immunopharmacol ; 134: 112165, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692017

RESUMEN

Particulate matter (PM) is considered the fundamental component of atmospheric pollutants and is associated with the pathogenesis of many respiratory diseases. Fibroblast growth factor 10 (FGF10) mediates mesenchymal-epithelial signaling and has been linked with the repair process of PM-induced lung injury (PMLI). However, the pathogenic mechanism of PMLI and the specific FGF10 protective mechanism against this injury are still undetermined. PM was administered in vivo into murine airways or in vitro to human bronchial epithelial cells (HBECs), and the inflammatory response and ferroptosis-related proteins SLC7A11 and GPX4 were assessed. The present research investigates the FGF10-mediated regulation of ferroptosis in PMLI mice models in vivo and HBECs in vitro. The results showed that FGF10 pretreatment reduced PM-mediated oxidative damage and ferroptosis in vivo and in vitro. Furthermore, FGF10 pretreatment led to reduced oxidative stress, decreased secretion of inflammatory mediators, and activation of the Nrf2-dependent antioxidant signaling. Additionally, silencing of Nrf2 using siRNA in the context of FGF10 treatment attenuated the effect on ferroptosis. Altogether, both in vivo and in vitro assessments confirmed that FGF10 protects against PMLI by inhibiting ferroptosis via the Nrf2 signaling. Thus, FGF10 can be used as a novel ferroptosis suppressor and a potential treatment target in PMLI.


Asunto(s)
Ferroptosis , Factor 10 de Crecimiento de Fibroblastos , Lesión Pulmonar , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Material Particulado , Transducción de Señal , Ferroptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Material Particulado/toxicidad , Humanos , Transducción de Señal/efectos de los fármacos , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Ratones , Estrés Oxidativo/efectos de los fármacos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/prevención & control , Masculino , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Línea Celular , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Modelos Animales de Enfermedad , Sistema de Transporte de Aminoácidos y+
4.
Chem Sci ; 15(17): 6314-6320, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699276

RESUMEN

Single-cell mass spectrometry (MS) is an essential technology for sensitive and multiplexed analysis of metabolites and lipids for cell phenotyping and pathway studies. However, the structural elucidation of lipids from single cells remains a challenge, especially in the high-throughput scenario. Technically, there is a contradiction between the inadequate sample amount (i.e. a single cell, 0.5-20 pL) for replicate or multiple analysis, on the one hand, and the high metabolite coverage and multidimensional structure analysis that needs to be performed for each single cell, on the other hand. Here, we have developed a high-throughput single-cell MS platform that can perform both lipid profiling and lipid carbon-carbon double bond (C[double bond, length as m-dash]C) location isomer resolution analysis, aided by C[double bond, length as m-dash]C activation in unsaturated lipids by the Paternò-Büchi (PB) reaction and tandem MS, termed single-cell structural lipidomics analysis. The method can achieve a single-cell analysis throughput of 51 cells per minute. A total of 145 lipids were structurally characterized at the subclass level, of which the relative abundance of 17 isomeric lipids differing in the location of C[double bond, length as m-dash]C from 5 lipid precursors was determined. While cell-to-cell variations in MS1-based lipid profiling can be large, an advantage of quantifying lipid C[double bond, length as m-dash]C location isomers is the significantly improved quantitation accuracy. For example, the relative standard deviations (RSDs) of the relative amounts of PC 34:1 C[double bond, length as m-dash]C position isomers in MDA-MB-468 cells are half smaller than those measured for PC 34:1 as a whole by MS1 abundance profiling. Taken together, the developed method can be effectively used for in-depth structural lipid metabolism network analysis by high-throughput analysis of 142 MDA-MB-468 human breast cancer cells.

5.
Chem Biol Interact ; 395: 111032, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38705442

RESUMEN

Particulate matter (PM), the main component of air pollutants, emerges as a research hotspot, especially in the area of respiratory diseases. Paeoniflorin (PAE), known as anti-inflammatory and immunomodulatory effects, has been reported to alleviate acute lung injury (ALI). However, the effect of PAE on PM-induced ALI and the underlying mechanisms are still unclear yet. In this study, we established the PM-induced ALI model using C57BL/6J mice and BEAS-2B cells to explore the function of PAE. In vivo, mice were intraperitoneally injected with PAE (100 mg/kg) or saline 1 h before instilled with 4 mg/kg PM intratracheally and were euthanized on the third day. For lung tissues, HE staining and TUNEL staining were used to evaluate the degree of lung injury, ELISA assay was used to assess inflammatory mediators and oxidative stress level, Immunofluorescence staining and western blotting were applied to explore the role of pyroptosis and Nrf2 signaling pathway. In vitro, BEAS-2B cells were pretreated with 100 µM PAE before exposure to 200 µg/ml PM and were collected after 24h for the subsequent experiments. TUNEL staining, ROS staining, and western blotting were conducted to explore the underlying mechanisms of PAE on PM-induced ALI. According to the results, PAE can attenuate the degree of PM-induced ALI in mice and reduce PM-induced cytotoxicity in BEAS-2B cells. PAE can relieve PM-induced excessive oxidative stress and NLRP3 inflammasome-mediated pyroptosis. Additionally, PAE can also activate Nrf2 signaling pathway and inhibition of Nrf2 signaling pathway can impair the protective effect of PAE by aggravating oxidative stress and pyroptosis. Our findings demonstrate that PAE can attenuate PM-induced ALI by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis, which is mediated by Nrf2 signaling pathway.


Asunto(s)
Lesión Pulmonar Aguda , Glucósidos , Inflamasomas , Ratones Endogámicos C57BL , Monoterpenos , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Material Particulado , Piroptosis , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Glucósidos/farmacología , Glucósidos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Ratones , Monoterpenos/farmacología , Inflamasomas/metabolismo , Masculino , Humanos , Línea Celular
6.
Sci Total Environ ; 927: 172236, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582123

RESUMEN

Pindolol (PIN) is a commonly used ß-blocker drug and has been frequently detected in various natural waters. Comprehensive understanding of its environmental photochemical transformation is necessary to assess its environmental risk. In this study, the photodegradation kinetics and mechanisms of PIN in both freshwater and coastal water were investigated for the first time. The photodegradation experiments were carried out by steady-state photochemical experiment under simulated sunlight irradiation. The results showed that the photodegradation rate of PIN in the freshwater of the Pearl River estuary was significantly faster than that in its downstream coastal water. In river water, PIN can undergo both direct photolysis and indirect photolysis induced by riverine dissolved organic matter (DOM) mainly through excited triplet-state of DOM and singlet oxygen, while direct photolysis dominated its degradation in coastal water. The promotion effect was found to be much greater for Suwannee River Natural Organic Matter (SRNOM) than that of the sampled riverine DOM, due to its high steady-state concentrations of reactive species. Interestingly, coastal DOM in northern and southern China were found to have similar promotion effects on PIN photodegradation for the first time, but both less than that of riverine DOM. A total of seven degradation products of PIN resulting from hydroxylation, hydrogen abstraction and cleavage of ether bond were identified. Biological toxicity of one products were found to be higher than that of PIN. These results are of significance for knowing the persistence and ecological risk of PIN in natural waters.

7.
Cureus ; 16(3): e56993, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38681330

RESUMEN

Neurogenic bladder (NB) is a frequently encountered post-stroke complication, characterized by symptoms, such as urinary incontinence, dysuria, increased frequency, and urgency. Here, we present a case of a 75-year-old male with urgent urination, frequent urination, urinary incontinence, conspicuous discomfort during urination, and an unpleasant smell in the urine following a stroke. By reviewing the patient's previous medical records of stroke and ruling out other potential causes for bladder dysfunction, a diagnosis of NB could be established. We implemented conventional physical therapy, pelvic floor muscle training with the electromyography biofeedback device, and continuous theta burst stimulation (cTBS) on the contralesional primary motor cortex area to manage bladder function. To the best of our knowledge, this is the first case report on cTBS applied to manage NB after stroke. Our treatment has demonstrated remarkable efficacy in enhancing bladder and kidney function, improving the overall quality of life, and alleviating anxiety and depression symptoms in this patient. This case study concludes that the noninvasive neuromodulation approach exhibits significant potential in the clinical field when addressing this specific patient population.

8.
J Med Chem ; 67(5): 3885-3908, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38278140

RESUMEN

Oncolytic peptides represent promising novel candidates for anticancer treatments. In our efforts to develop oncolytic peptides possessing both high protease stability and durable anticancer efficiency, three rounds of optimization were conducted on the first-in-class oncolytic peptide LTX-315. The robust synthetic method, in vitro and in vivo anticancer activity, and anticancer mechanism were investigated. The D-type peptides represented by FXY-12 possessed significantly improved proteolytic stability and sustained anticancer efficiency. Strikingly, the novel hybrid peptide FXY-30, containing one FXY-12 and two camptothecin moieties, exhibited the most potent in vitro and in vivo anticancer activities. The mechanism explorations indicated that FXY-30 exhibited rapid membranolytic effects and induced severe DNA double-strand breaks to trigger cell apoptosis. Collectively, this study not only established robust strategies to improve the stability and anticancer potential of oncolytic peptides but also provided valuable references for the future development of D-type peptides-based hybrid anticancer chemotherapeutics.


Asunto(s)
Antineoplásicos , Antineoplásicos/farmacología , Oligopéptidos/farmacología , Péptidos/farmacología , Apoptosis , Péptido Hidrolasas , Línea Celular Tumoral
9.
J Cosmet Dermatol ; 23(1): 227-235, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37400988

RESUMEN

BACKGROUND: Hypertrophic scar (HS) that can lead to defects in appearance and function is often characterized by uncontrolled fibroblast proliferation and excessive inflammation. Curcumin has been shown to have anti-inflammatory and anti-oxidative effects and to play an anti-fibrotic role by interfering transforming growth factor-ß1 (TGF-ß1)/Smads signaling pathways. AIM: To study the effect and mechanism of curcumin on HS from the perspective of fibroblast activity and inflammation regulation. METHODS: Cell proliferation, migration and the expression of α-smooth muscle actin (α-SMA) of TGF-ß1-induced human dermal fibroblasts (HDFs) treated by curcumin were evaluated using Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine staining, Transwell assay, Western blotting and immunofluorescence, respectively. The expression of TGF-ß1/Smad3 pathway-related molecules (TGF-ß1, TGFß-R1/2, p-Smad3, Smad4) was detected by Western blotting. In a rabbit ear model, hematoxylin and eosin and Masson's staining were conducted to assess scar elevation and collagen deposition, and immunohistochemistry was performed to detect the activation of fibroblasts and infiltration of inflammatory cells. RESULTS: Curcumin inhibited proliferation, migration and α-SMA expression of HDFs in a dose-dependent manner. Curcumin (25 µm mol/L) did not regulate the expression of endogenous TGF-ß1, but suppressed Smad3 phosphorylation and nuclear translocation, leading to lower α-SMA expression. Curcumin also reduced hypertrophic scarring of rabbit ear, accompanied by the inhibited TGF-ß1/Smad3 pathway, inflammatory infiltration and M2 macrophage polarization. CONCLUSION: Curcumin plays an anti-scar role through regulating fibroblast activation and tissue inflammation. Our findings provide scientific reference for the clinical use of curcumin in the treatment of HS.


Asunto(s)
Cicatriz Hipertrófica , Curcumina , Animales , Humanos , Conejos , Cicatriz Hipertrófica/tratamiento farmacológico , Cicatriz Hipertrófica/patología , Factor de Crecimiento Transformador beta1/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Curcumina/metabolismo , Fibroblastos , Inflamación/tratamiento farmacológico , Inflamación/patología
10.
Burns ; 50(1): 178-189, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37783633

RESUMEN

BACKGROUND AND OBJECTIVES: Botulinum toxin type A (BTA) is often used for wrinkles and muscle convulsive diseases due to its blocking of the transmission of nerve impulses. Stromal vascular fraction gel (SVF-gel) prepared from adipose tissue has novel effects on skin depression and poor texture. Both BTA and SVF-gel are proved to possess anti-scar potential. This study aimed to assess and compare their therapeutic effects on hypertrophic scars. MATERIALS AND METHODS: The rabbit ear scar model was established and treated with BTA and SVF-gel, alone or in combination. Gross evaluation using Manchester Scar Scale (MSS) was conducted immediately, 4 and 8 weeks after initial treatment. After tissue sample harvest, histological and Western blot analyses were performed. RESULTS: All the treatments alleviated scar hyperplasia in different degrees by inhibiting fibroblast activation (Ki-67, α-SMA), tissue inflammation (CD45, IL-1ß) and the transforming growth factor-ß1 (TGF-ß1)/Smad3 pathway. Despite an excellent anti-inflammatory effect, improvement of scar appearance and pathological characteristics in SVF-gel-contained groups was not as good as that in BTA-only group, which might be related to the retention of M2-type macrophages (CD163 +) and partial maintenance of TGF-ß1 expression. CONCLUSION: Our data suggest that BTA has better anti-scar efficacy than SVF-gel, and the combination of these two treatments shows no obvious combinatorial effect.


Asunto(s)
Toxinas Botulínicas Tipo A , Quemaduras , Cicatriz Hipertrófica , Animales , Conejos , Cicatriz Hipertrófica/patología , Toxinas Botulínicas Tipo A/farmacología , Toxinas Botulínicas Tipo A/uso terapéutico , Toxinas Botulínicas Tipo A/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Fracción Vascular Estromal , Quemaduras/complicaciones , Quemaduras/terapia , Quemaduras/metabolismo , Fibroblastos
11.
Angew Chem Int Ed Engl ; 62(52): e202312275, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37946693

RESUMEN

Spatial lipidomics based on mass spectrometry imaging (MSI) is a powerful tool for fundamental biology studies and biomarker discovery. But the structure-resolving capability of MSI is limited because of the lack of multiplexed tandem mass spectrometry (MS/MS) method, primarily due to the small sample amount available from each pixel and the poor ion usage in MS/MS analysis. Here, we report a mobility-modulated sequential dissociation (MMSD) strategy for multiplex MS/MS imaging of distinct lipids from biological tissues. With ion mobility-enabled data-independent acquisition and automated spectrum deconvolution, MS/MS spectra of a large number of lipid species from each tissue pixel are acquired, at no expense of imaging speed. MMSD imaging is highlighted by MS/MS imaging of 24 structurally distinct lipids in the mouse brain and the revealing of the correlation of a structurally distinct phosphatidylethanolamine isomer (PE 18 : 1_18 : 1) from a human hepatocellular carcinoma (HCC) tissue. Mapping of structurally distinct lipid isomers is now enabled and spatial lipidomics becomes feasible for MSI.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Espectrometría de Masas en Tándem , Lipidómica/métodos , Lípidos/química
12.
J Thorac Dis ; 15(9): 4987-5005, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37868883

RESUMEN

Background: Stenotrophomonas maltophilia (SMA) has emerged as an important pathogen capable of causing an opportunistic and nosocomial infection. We performed RNA sequencing (RNA-seq) of lung tissues from mice with pulmonary SMA infection over time via aerosolized intratracheal inhalation to investigate transcription profile changes in SMA-infected lungs. Methods: A mouse model of acute lethal SMA pneumonia was established in this study using aerosolized intratracheal inhalation, laying the groundwork for future SMA research. RNA-seq was then used to create a transcriptional profile of the lungs of the model mice at 0, 4, 12, 24, 48, and 72 hours post-infection (hpi). Mfuzz time clustering, weighted gene coexpression network analysis (WGCNA), and Immune Cell Abundance Identifier for mouse (ImmuCellAI-mouse) were used to analyze RNA-seq data. Results: A gradual change in the lung transcriptional profile was observed, which was consistent with the expected disease progression. At 4 hpi, the expression of genes related to the acute phase inflammatory response increased, as predicted abundance of innate immune cells. At this stage, an increased demand for energy was also observed, including an increase in the expression of genes involved in circulation, muscle function and mitochondrial respiratory chain function. The expression of genes associated with endoplasmic reticulum stress (ERS) and autophagy increased at 24 hpi. Unlike the number of natural killer (NK) cells following most bacterial lung infections, the abundance of NK cells decreased following infection with SMA. The expression levels of Cxcl10, Cd14, Gbp5, Cxcr2, Tnip1, Zc3h12a, Egr1, Sell and Gbp2 were high and previously unreported in SMA pneumonia, and they may be important targets for future studies. Conclusions: To our knowledge, this is the first study to investigate the pulmonary transcriptional response to SMA infection. The findings shed light on the molecular mechanisms underlying the pathogenesis of SMA pneumonia, which may aid in the development of therapies to reduce the occurrence of SMA pulmonary infection.

13.
Crit Rev Eukaryot Gene Expr ; 33(8): 57-75, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37606164

RESUMEN

High-temperature requirement factor A3 (HTRA3), a member of the HTRA protein family, is closely associated with apoptosis and plays a crucial role in controlling signal transmission and cancer development. However, the regulatory pathways of HTRA3 in tumors are not fully understood, necessitating a comprehensive analysis of HTRA3 in cancers. In this study, we conducted a multi-omics analysis of HTRA3 in pan-cancer using data from various databases including TCGA, cBioPortal, GeneMANIA, DAVID, TIMER2.0, SangerBox, and RNAactDrug. Our analysis included gene expression, survival prognosis, diagnostic value, mutation, gene-gene interaction, enrichment analysis, and drug sensitivity analysis. We found that HTRA3 is aberrantly expressed in a variety of cancers and significantly correlates with diagnosis, prognosis, TMB, MSI, immune checkpoint (ICP) genes, and drug sensitivity in various cancer types. HTRA3 is involved in a variety of cancer pathways, particularly extracellular matrix (ECM) alterations, and has a potential role in epithelial-mesenchymal transition (EMT). HTRA3 expression is positively correlated with the abundance of cancer-associated fibroblasts (CAFs) and endothelial cells in the tumor microenvironment, and is also positively correlated with immune scores, stromal scores, and ESTIMATE scores in multiple cancers. HTRA3 is often overexpressed in cancer and is associated with poor prognosis and regulation of the tumor's immune response. Therefore, it may serve as a novel biomarker for tumor diagnosis and treatment.


Asunto(s)
Células Endoteliales , Neoplasias , Humanos , Pronóstico , Neoplasias/diagnóstico , Neoplasias/genética , Temperatura , Apoptosis , Microambiente Tumoral/genética , Serina Endopeptidasas/genética
14.
J Thorac Dis ; 15(6): 3359-3371, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37426126

RESUMEN

Background: Resistance restricts the long-term therapeutic efficacy of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of non-small cell lung cancer (NSCLC) with positive EGFR mutations. The present study sought to identify the potential protein osteopontin (OPN) involved in EGFR-TKI resistance and examine its therapeutic mechanism in NSCLC. Methods: The expression of OPN in NSCLC tissues was evaluated by immunohistochemistry (IHC). Western blot (WB), quantitative real­time polymerase chain reaction (qRT-PCR), and immunofluorescence staining were used to analyze OPN and epithelial-mesenchymal transition (EMT)-related protein expression in the PC9 and PC9 gefitinib resistance (PC9GR) cells. Enzyme-linked immunosorbent assays (ELISAs) were used to detect the secreted OPN. Cell Counting Kit-8 (CCK-8) assays and flow cytometry were used to examine the effect of OPN on the gefitinib-induced growth and death of PC9 or PC9GR cells. Results: OPN was upregulated in the human NSCLC tissues and cells resistant to EGFR-TKIs. The overexpression of OPN inhibited EGFR-TKI-induced apoptosis and was associated with the formation of EMT. By activating the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT)-EMT pathway, OPN contributed to the development of EGFR-TKI resistance. Reducing OPN expression and inhibiting PI3K/AKT signaling improved EGFR-TKI sensitivity significantly more than the use of either agent alone. Conclusions: This study showed that OPN increased EGFR-TKI resistance in NSCLC through the OPN-PI3K/AKT-EMT pathway. Our findings may provide a possible therapeutic target for overcoming EGFR-TKI resistance in this pathway.

15.
Anal Chem ; 95(29): 10879-10886, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37427961

RESUMEN

Mass spectrometry imaging (MSI) is a powerful methodology that enables the visualization of the spatial distribution of biomolecules, including lipids, peptides, and proteins, from biological tissue sections. While two-dimensional (2D) MSI has been widely reported in various applications, three-dimensional (3D) MSI can enable the mapping of biomolecule distribution in complex biological structures (e.g., organs) with an added dimension. However, traditional 3D MSI techniques are time-consuming since 3D MS images are constructed from 2D MSI analyses of a series of tissue sections. In this study, we propose a 3D MSI workflow, termed DeepS, which uses a 3D sparse sampling network (3D-SSNet) and a sparse sampling strategy to significantly accelerate 3D MSI analyses. Sparsely sampled tissue sections are reconstructed using 3D-SSNet, yielding results comparable to those using full sampling MSI, even at a sampling ratio of 20-30%. The workflow performed well when applied to 3D imaging of a mouse brain with Alzheimer's disease, and combined with transfer learning, it is successfully used for the 3D MSI analyses of more heterogeneous samples, e.g., a mouse brain with glioblastoma and a mouse kidney.


Asunto(s)
Glioblastoma , Imagenología Tridimensional , Ratones , Animales , Espectrometría de Masas/métodos , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
16.
J Pharmacol Sci ; 152(4): 210-219, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37344056

RESUMEN

Aberrant intestinal epithelial barrier function is the primary pathology of Ulcerative colitis (UC), making it a desirable drug target. In this study, our small-molecule compound AI-34 exerted a significant protective effect in an LPS-induced epithelial barrier injury model. In vitro, AI-34 treatment significantly decreased cell permeability, increased transmembrane resistance, and maintained the junctional protein (ZO-1 and E-cadherin) levels in monolayer cells. Using the LiP-small molecule mapping approach (LiP-SMap), we demonstrated that AI-34 binds to 14-3-3ζ. AI-34 promoted the interaction between 14-3-3ζ and ß-catenin, decreasing the ubiquitination of ß-catenin and thus maintaining intestinal epithelial barrier function. Finally, AI-34 triggered the stabilization of ß-catenin mediated by 14-3-3ζ, provoking a significant improvement in the DSS-induced colitis model. Our findings suggest that AI-34 may be a promising candidate for UC treatment.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Proteínas 14-3-3 , beta Catenina/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Modelos Animales de Enfermedad , Mucosa Intestinal , Ratones Endogámicos C57BL
17.
Int Immunopharmacol ; 120: 110371, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37245303

RESUMEN

Particulate matter (PM) is a major environmental pollutant that contributes considerably to deaths worldwide. The pathogenesis of PM-induced lung injury (PILI) is far from elucidated and warrants effective intervention. An effective component of licorice, glycyrrhizin (GL), has been the subject of much research due to its anti-inflammatory and anti-oxidative capabilities. Although preventive properties of GL are well-known, the precise mechanism of GL in PILI has not yet been investigated. A mouse model of PILI was used to examine the protective effects of GL in vivo, and a human bronchial epithelial cells (HBECs) model was used in vitro. In order to determine whether GL mitigates PILI, its effects on endoplasmic reticulum (ER) stress, NLRP3 inflammasome-mediated pyroptosis and the oxidative response were examined. According to the findings, GL reduced PILI and activate anti-oxidative Nrf2/HO-1/NQO1 signaling in mice. Notably, the effect of GL on PM-induced ER stress and NLRP3 inflammasome-mediated pyroptosis was significantly attenuated by the Nrf2 inhibitor ML385. The data suggest that via the anti-oxidative Nrf2 signaling, GL may reduce oxidative stress-mediated ER stress and NLRP3 inflammasome-mediated pyroptosis. Therefore, GL may serve as a promising treatment for PILI.


Asunto(s)
Inflamasomas , Lesión Pulmonar , Humanos , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Piroptosis , Material Particulado/toxicidad , Transducción de Señal , Estrés del Retículo Endoplásmico , NAD(P)H Deshidrogenasa (Quinona)/metabolismo
18.
Clinics (Sao Paulo) ; 78: 100207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37141768

RESUMEN

OBJECTIVE: This study aimed to perform a meta-analysis to investigate the diagnostic safety and accuracy of Ultrasound-Guided Core Needle Biopsy (US-CNB) Axillary Lymph Nodes (ALNs) region in patients with Breast Cancer (BC). METHODS: The authors searched the electronic databases PubMed, Scopus, Embase, and Web of Science for clinical trials about US-CNB for the detection of ALNs in breast cancer patients. The authors extracted and pooled raw data from the included studies and performed statistical analyses using Meta-DiSc 1.4 and Review Manager 5.3 software. A random effects model was used to calculate the data. At the same time, data from the Ultrasound-guided Fine-Needle Aspiration (US-FNA) were introduced for comparison with the US-CNB. In addition, the subgroup was performed to explore the causes of heterogeneity. (PROSPERO ID: CRD42022369491). RESULTS: In total, 18 articles with 2521 patients were assessed as meeting the study criteria. The overall sensitivity was 0.90 (95% CI [Confidence Interval], 0.87‒0.91; p = 0.00), the overall specificity was 0.99 (95% CI 0.98‒1.00; p = 0.62), the overall area under the curve (AUC) was 0.98. Next, in the comparison of US-CNB and US-FNA, US-CNB is better than US-FNA in the diagnosis of ALNs metastases. The sensitivity was 0.88 (95% CI 0.84‒0.91; p = 0.12) vs. 0.73 (95% CI 0.69‒0.76; p = 0.91), the specificity was 1.00 (95% CI 0.99‒1.00; p = 1.00) vs. 0.99 (95% CI 0.67‒0.74; p = 0.92), and the AUC was 0.99 vs. 0.98. Subgroup analysis showed that heterogeneity may be related to preoperative Neoadjuvant Chemotherapy (NAC) treatment, region, size of tumor diameter, and the number of punctures. CONCLUSION: US-CNB has a satisfactory diagnostic performance with good specificity and sensitivity in the preoperative diagnosis of ALNs in BC patients.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Metástasis Linfática/patología , Neoplasias de la Mama/patología , Biopsia con Aguja Gruesa , Axila/patología , Sensibilidad y Especificidad , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Ganglios Linfáticos/cirugía , Ultrasonografía Intervencional , Estudios Retrospectivos
19.
Chin J Dent Res ; 26(1): 35-45, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36988065

RESUMEN

OBJECTIVE: To analyse the effects of premolar extraction on the upper airway in adult and adolescent orthodontic patients using CBCT. METHODS: The Embase, Web of Science, Cochrane Library and Medline (via PubMed) databases were searched with no language restrictions. Longitudinal studies in which CBCT was applied to assess the effects of tooth extraction on the upper airway were included in the analysis. Two authors performed the study selection, methodological quality assessment, data extraction and data synthesis independently. RESULTS: A total of 12 studies were included, six of which were eligible for quantitative synthesis. In the adult group, the nasopharynx and oropharynx volume showed no significant change, and the minimum cross-sectional area of the upper airway demonstrated a non-significant decrease compared to the non-extraction group. In the adolescent group, the nasopharynx volume, oropharynx volume and minimum cross-sectional area of the upper airway increased in a non-significant manner. CONCLUSION: The currently available evidence indicates that tooth extraction does not increase the risk of airway collapse in adult and adolescent patients. The present findings should be interpreted with caution and evaluated in further high-quality studies.


Asunto(s)
Laringe , Orofaringe , Humanos , Adulto , Adolescente , Diente Premolar , Nasofaringe , Nariz
20.
Sci Adv ; 9(2): eabq2937, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638165

RESUMEN

Intracellular lipid accumulation is commonly seen in fibrotic livers, but its exact role in liver fibrosis remains elusive. Here, we established a multimodal nonlinear optical microscopy to quantitatively map distribution of biomolecules in fibrotic livers. Our data revealed that unsaturated triglycerides were predominantly accumulated in central vein area during liver fibrosis but not in portal vein area. Moreover, the lipid homeostasis was remarkably dysregulated in the late-stage compared to the early-stage fibrosis, including increased unsaturated triglycerides with decreased lipid unsaturation degree and decreased membrane fluidity. Such alterations were likely due to up-regulated lipogenesis, desaturation, and peroxidation, which consequently led to endoplasmic reticulum stress and cell death. Inspiringly, injured hepatocyte could be rescued by remodeling lipid homeostasis via either supply of unsaturated fatty acids or enhancement of membrane fluidity. Collectively, our study improves current understanding of the role of lipid homeostasis in fibrosis and open opportunities for treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...