Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138658

RESUMEN

In the long-term working state, stains such as dust, oil, and charged particles in the environment are prone to deposit on the surface of the power equipment, which has great security risks. To achieve anti-stain performance, fluorocarbon composite coating with a low surface energy was prepared and studied. In this paper, SiO2 nanoparticles were used as inorganic fillers and fluorocarbon resin was used as the substrate to form anti-stain coatings. By adjusting and optimizing the ratio of fillers and organic resins, coatings with different static contact angles were constructed. The optimum composite coating has a contact angle of 151 ± 2° and a surface energy of 9.6 mJ/m2. After high-temperature treatment (up to 200 °C), immersion in corrosive solutions (pH 3-11), and sandpaper abrasion (after 5 abrasion cycles), the coating has been proven to show good thermal, chemical and mechanical stability. Our study provides significant research and market opportunities for the anti-stain application of the fluorocarbon composite coating on power equipment.

2.
Materials (Basel) ; 16(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38005152

RESUMEN

In a high-moisture environment where dust and coastal saltwater are prevalent, the stability of power equipment can be adversely affected. This issue can result in equipment downtime, particularly for transformers, severely disrupting the continuous operation of DC transmission systems. To address this challenge, a superhydrophobic modified fluorosilicone coating was developed, incorporating anti-stain properties. To tackle this issue comprehensively, an orthogonal experiment was conducted, involving six factors and three levels. The study focused particularly on assessing the impact of water-repellent recovery agents, nanofillers, antistatic agents, anti-mold agents, leveling agents, as well as wetting and dispersing agents on the coating's surface tension. The results demonstrate that selecting an appropriate base resin and incorporating well-matched functional additives played a central role in effectively reducing the surface tension of the coating. Consequently, optimized coatings exhibited exceptional resistance to stains and displayed strong corrosion resistance.

3.
Mol Biol Rep ; 50(4): 3297-3307, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36715788

RESUMEN

BACKGROUND: Anoctamin-1 (ANO1) was identified as an unfavorable prognostic marker in pancreatic cancer. However, the exact implication of ANO1 in pancreatic cancer is still poorly understood. Here we investigated the effect of ANO1 in pancreatic cancer progression under the context of oncogenic KRAS, aiming at finding a new therapeutic target. METHODS: Knockdown and overexpression of oncogenic KRAS as well as ANO1 in PDAC cell lines were performed by lentivirus infection. Cell proliferation and migration assay, RNA seq analysis were performed in PDAC cells bearing different status of ANO1 and KRAS. In vivo mice model was used to investigate the xenograft tumor growth with different status of KRAS and ANO1. RESULTS: Our results showed that ANO1 expression level is elevated in poorly differentiated cancer cells. Overexpression of ANO1 in PDAC cancer cells was found to promote cancer cell proliferation in vitro and in vivo, which synergized with the introduction of oncogenic KRAS. Consistently, knockdown of ANO1 expression was found to suppress cancer growth in vitro and in vivo. RNA seq analysis revealed that the observed synergistic cancer-promoting effect from ANO1 and oncogenic KRAS is likely due to concurrent activating key genes involved in lipid metabolism including HMGCS1. CONCLUSION: The outcome from our study suggests that ANO1 plays an important role in promoting pancreatic cancer development, especially at the presence of oncogenic KRAS. Considering the prevalence of KRAS mutation in pancreatic cancer patients, suppression ANO1 may represent a potential effective therapeutic measure in pancreatic cancer treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Carcinoma Ductal Pancreático/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Anoctamina-1/genética , Neoplasias Pancreáticas/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas
4.
Front Aging Neurosci ; 14: 1036120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483116

RESUMEN

Background: Recently, research on the microbiota-gut-brain axis (MGBA) has received increasing attention, and the number of studies related to Alzheimer's disease (AD) has increased rapidly, but there is currently a lack of summary of MGBA in AD. Objective: To capture research hotspots, grasp the context of disciplinary research, and explore future research development directions. Methods: In the core dataset of Web of Science, documents are searched according to specific subject words. CiteSpace software is used to perform statistical analysis on measurement indicators such as the number of published papers, publishing countries, institutions, subject areas, authors, cocited journals, and keywords, and to visualize of a network of relevant content elements. Results: The research of MGBA in AD has shown an upward trend year by year, and the cooperation between countries is relatively close, and mainly involves the intersection of neuroscience, pharmacy, and microbiology. This research focuses on the relationship between MGBA and AD symptoms. Keyword hotspots are closely related to new technologies. Alzheimer's disease, anterior cingulate cortex, inflammatory degeneration, dysbiosis, and other research are the focus of this field. Conclusion: The study revealed that the research and development of MGBA in AD rapidly progressed, but no breakthrough has been made in the past decade, it still needs to be closely combined with multidisciplinary technology to grasp the frontier hotspots. Countries should further strengthen cooperation, improve the disciplinary system, and increase the proportion of empirical research in all research.

5.
Life Sci ; : 120178, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34838849

RESUMEN

AIMS: Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder seriously endangering the physical and mental health of the elderly, while no effective treatments and drugs in clinical practice are available. Thymosin ß4 (Tß4) is a multifunctional polypeptide involved in many physiological and pathological processes including AD. This study aims to understand the function and molecular mechanism of Tß4 in the development of AD. MAIN METHODS: Neuroblastoma cell line SH-SY5Y was treated with ß-amyloid (Aß) to induce AD-like pathological changes, which serves as Alzheimer's disease model. Tß4 was overexpressed in SH-SY5Y cells by lentivirus infection, and downregulated by siRNA transfection. Apoptosis of transfected SH-SY5Y cells after Aß-treatment was examined by western blot and flow cytometry. Apoptotic proteins and Tß4-related signaling pathways were also investigated by western blot. KEY FINDINGS: We found that Tß4 overexpression increased viability and suppressed apoptosis of Aß-treated SH-SY5Y cells. Tß4 ameliorated oxidative damage and suppressed reactive oxygen species production in Aß-treated SH-SY5Y cells. Consistently, Tß4 overexpression down-regulated the expression levels of pro-apoptotic markers such as Caspase-3, Caspase-8, and Bax, while up-regulated the expression level of anti-apoptotic gene Bcl-2 in Aß-stimulated SH-SY5Y cells. Mechanistically, we demonstrated that Tß4 dampened ERK/p38 MAPK signaling and enhanced 5-HTR1A expression in Aß-treated SH-SY5Y cells. Moreover, we revealed that Tß4 inhibited the activation of ERK pathway through up-regulating 5-HTR1A in Aß-treated SH-SY5Y cells. SIGNIFICANCE: Taken together, our findings provide evidences to support the neuroprotective role of Tß4 and might open up new therapeutic applications of Tß4 in AD treatment.

6.
Genomics ; 113(6): 3512-3522, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34284078

RESUMEN

OBJECTIVE: Our study aims to identify the impact of histone deacetylase 3 (HDAC3) and microRNA-376c-3p (miR-376c-3p) on gastric cancer (GC) by targeting wingless-type MMTV integration site family member 2b (WNT2b). METHODS: Levels of miR-376c-3p, HDAC3 and WNT2b were assessed. GC cells were treated with altered HDAC3 or miR-376c-3p to evaluate their biological functions, and rescue experiment was performed to assess the effect of WNT2b on GC cells. The tumor growth in vivo was observed. RESULTS: HDAC3 and WNT2b were up-regulated while miR-376c-3p was reduced in GC tissues and cell lines. The inhibited HDAC3 or elevated miR-376c-3p could restrain malignant behaviors of GC cells in vitro, and also suppress the xenograft growth. WNT2b silencing reduced the effect of miR-376c-3p inhibition while WNT2b overexpression mitigated that of miR-376c-3p promotion on GC cell growth. CONCLUSION: Inhibiting HDAC3 promotes miR-376c-3p to suppress malignant phenotypes of GC cells via reducing WNT2b, thereby restricting GC development.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Proliferación Celular/genética , Glicoproteínas/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fenotipo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Proteínas Wnt/genética
7.
J Neuroinflammation ; 18(1): 146, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183019

RESUMEN

BACKGROUND: Thymosin ß4 (Tß4) is the most abundant member of the ß-thymosins and plays an important role in the control of actin polymerization in eukaryotic cells. While its effects in multiple organs and diseases are being widely investigated, the safety profile has been established in animals and humans, currently, little is known about its influence on Alzheimer's disease (AD) and the possible mechanisms. Thus, we aimed to evaluate the effects and mechanisms of Tß4 on glial polarization and cognitive performance in APP/PS1 transgenic mice. METHODS: Behavior tests were conducted to assess the learning and memory, anxiety and depression in APP/PS1 mice. Thioflavin S staining, Nissl staining, immunohistochemistry/immunofluorescence, ELISA, qRT-PCR, and immunoblotting were performed to explore Aß accumulation, phenotypic polarization of glial cells, neuronal loss and function, and TLR4/NF-κB axis in APP/PS1 mice. RESULTS: We demonstrated that Tß4 protein level elevated in all APP/PS1 mice. Over-expression of Tß4 alone alleviated AD-like phenotypes of APP/PS1 mice, showed less brain Aß accumulation and more Insulin-degrading enzyme (IDE), reversed phenotypic polarization of microglia and astrocyte to a healthy state, improved neuronal function and cognitive behavior performance, and accidentally displayed antidepressant-like effect. Besides, Tß4 could downregulate both TLR4/MyD88/NF-κB p65 and p52-dependent inflammatory pathways in the APP/PS1 mice. While combination drug of TLR4 antagonist TAK242 or NF-κB p65 inhibitor PDTC exerted no further effects. CONCLUSIONS: These results suggest that Tß4 may exert its function by regulating both classical and non-canonical NF-κB signaling and is restoring its function as a potential therapeutic target against AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Disfunción Cognitiva/metabolismo , FN-kappa B/metabolismo , Neuroglía/metabolismo , Timosina/genética , Timosina/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Memoria , Ratones , Ratones Transgénicos , Microglía/metabolismo , Neuronas/metabolismo , Fenotipo , Presenilina-1/genética , Transducción de Señal
8.
Exp Neurol ; 336: 113506, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33065077

RESUMEN

Overactivated microglia and neuroinflammation are considered to play a crucial role in the progression of Alzheimer's disease (AD). Triggering receptor expressed on myeloid cells-2 (TREM2), a type I transmembrane receptor, expressed uniquely by microglia in the brain, is involved in the neuroinflammatory responses of AD. In this study, to further explore the precise effects of TREM2 on neuroinflammation and the underlying mechanisms in AD, we employed a lentiviral-mediated strategy to overexpress TREM2 in the brain of APPswe/PS1dE9 (APP/PS1) transgenic mice and cultured BV2 cells. Our results showed that TREM2 overexpression rescued cognitive deficits, decreased ß-amyloid (Aß) plaques deposition, reduced synaptic and neuronal loss, as well as ameliorated neuroinflammation. The mechanistic study revealed that these protective effects were likely attributed to inhibition of neuroinflammatory responses through the JAK/STAT/SOCS signaling pathway and subsequent attenuation of pro-inflammatory cytokines. Furthermore, suppression of neuroinflammation might be ascribed to activation of the M2 microglia, as the levels of M2 phenotype markers Arg-1, IL-10 and Ym1 were markedly increased. Similarly, overexpression of TREM2 in BV2 cells also promoted M2 polarization and led to the alleviation of M1 microglial inflammatory responses through JAK/STAT/SOCS signaling pathway, suggesting that TREM2 is an important factor in shifting the microglia from M1 to M2 phenotype. Taken together, our results further provide insights into the role of TREM2 in AD pathogenesis and highlight TREM2 as a potential target against AD.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/psicología , Encefalitis/terapia , Glicoproteínas de Membrana/genética , Oligopéptidos/genética , Receptores Inmunológicos/genética , Transducción de Señal/efectos de los fármacos , Péptidos beta-Amiloides/farmacología , Animales , Línea Celular , Femenino , Humanos , Quinasas Janus/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Microglía , Actividad Motora , Comportamiento de Nidificación , Fragmentos de Péptidos/farmacología , Factores de Transcripción STAT/genética , Proteínas Supresoras de la Señalización de Citocinas
9.
Neurosci Lett ; 731: 135118, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32502508

RESUMEN

Patients with Alzheimer's disease often undergo anxiety and depression. Our previous studies have shown that α7nAChR protects against Aß-induced neurotoxicity via downregulation of p38 and JNK MAPKs, but the role of α7nAChR on Aß-induced anxiety and depressive-like behaviors and the effect of α7nAChR on the regulation of MAPKs pathways remain unknown. To examine the effects of α7nAChR and MAPKs pathways on Aß-induced anxiety and depression-like behaviors and to explore their relationships between them, elevated plus maze, open field and forced swim tests were performed. Protein levels of 5-HT1A receptor, 5-HT2C receptor, α7nAChR, t-ERK1/2 and p-ERK1/2 in the amygdala were analyzed by western blotting and immunostaining. Our study found out that Aß oligomers induced anxiety and depression-like behaviors in C56BL/6 mice with open field, elevated plus maze and forced swim tests. However, activation of α7nAChR or inhibition of ERK pathways showed significant antidepressant and anxiolytic-like effects on Aß-injected mice. Moreover, Aß significantly decreased the level of 5-HT1A receptor but increased the level of 5-HT2C receptor in the basolateral amygdala. Treatment with α7nAChR agonist PNU282987 or ERK inhibitor U0126 reversed Aß-induced 5-HT1A and 5-HT2C receptor changes. Moreover, activation of α7nAChR inhibited ERK pathway in the amygdala of Aß1-42-injected mice. Our study provides a new insight into the mechanism of α7nAChR in Aß-induced depression and anxiety-related symptoms through the regulation of ERK1/2 pathway and the potential association with serotonin receptors. Together, our data suggests that α7nAChR is protective against Aß-induced anxiety and depression-like behaviors in mice.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Ansiedad/metabolismo , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/efectos de los fármacos , Animales , Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/metabolismo , Receptores de Serotonina/efectos de los fármacos , Receptores de Serotonina/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
10.
Int Immunopharmacol ; 82: 106354, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32143008

RESUMEN

The 5-hydroxytryptamine (5-HT) receptor is significant for the regulation of mood and memory. However, the role of 5-HT1AR in ß-Amyloid protein (Aß)-induced cognitive decline, neuroinflammation and the possible mechanism remains elusive. Thus, we aimed to evaluate the effects of 5-HT1AR on Aß-induced learning and memory decline and neuroinflammation in mice. Novel object recognition and Morris water maze tests were performed to observe learning and memory behavior in mice. Protein levels of Iba1, GFAP, MAP2, TNF-α, Tß4, C-fos, IKK-ß, IKB-α, NF-κBp65, phospho-NF-κBp65 in the hippocampus were examined by immunostaining or western blotting. Aß1-42-treatment inducing learning and memory decline was shown in novel object recognition and Morris water maze tests; neuroinflammation shown in immunostaining. Our study found out that 5-HT1AR inhibitor WAY100635 showed significant improvement in Aß-induced learning and memory decline. Moreover, WAY100635 decreases levels of Iba1, GFAP, and TNF-α in the hippocampus, which were related to neuroinflammation. While treatment with 5-HT1AR agonist 8-OH-DPAT or ERK inhibitor U0126 exerted no effects or even aggravated Aß-induced learning and memory decline. In addition, WAY100635 could downregulate phospho-NF-κB in the hippocampus of Aß1-42-injected mice. These results provide new insight into the mechanism, for 5-HT1AR in Aß-induced cognitive impairments through crosstalk with the NF-κB signaling pathway. Our data indicated that WAY100635 was involved in the protective effects against neuroinflammation and improvement of learning and memory in Alzheimer's disease.

11.
Sci Rep ; 10(1): 4155, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139705

RESUMEN

Malignant gliomas are the most common tumor in central nervous system with poor prognosis. Due to the limitation of histological classification in earlier diagnosis and individualized medicine, it is necessary to combine the molecular signatures and the pathological characteristics of gliomas. Lots of microRNAs presented abnormal expression in gliomas and modulated gliomas development. Exploration the miRNAs profile is helpful for the diagnosis, therapy and prognosis of gliomas. It has been demonstrated that miR-144 plays important roles in solid tumors. However, the detail mechanisms remained unrevealed. In this study, we have demonstrated the level of miR-144 decreased in glioma tissues from patients, especially in gliomas with higher grades. MiR-144 was also validated have lower expression in glioma cell lines compared with cortical neuron cell by using qRT-PCR. The in vitro functional experiment indicated miR-144 improved gliomas progression through repressing proliferation, sensitizing to chemotherapeutics and inhibiting metastasis. We further identified fibroblast growth factor 7 (FGF7) and Caveolin 2 (CAV2) were target genes of miR-144 by luciferase reporter assay and western blotting. The mechanisms study suggested forced FGF7 expression elevated Akt activation and decreased reactive oxygen species (ROS) generation. The MTT and cell cycle assay indicated miR-144 suppressed glioma cells proliferation through modulating FGF mediated Akt signaling pathway. Meanwhile, miR-144 promoted Temozolomide (TMZ) induced apoptosis in glioma cells via increasing ROS production by using FACS. On the other hand, CAV2, as another target of miR-144, accelerated glioma cells migration and invasion via promoting glioma cells EMT progress. Retrieved expression of FGF7 or CAV2 rescued the proliferation and migration function mediated by miR-144. Furthermore, the in vivo experiments in PDX models displayed the anti-tumor function of miR-144, which could be retrieved by overexpression of FGF7 and CAV2. Taken together, these findings indicated miR-144 acted as a potential target against gliomas progression and uncovered a novel regulatory mechanism, which may provide a new therapeutic strategy and prognostic indicator for gliomas.


Asunto(s)
Caveolina 2/metabolismo , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Glioma/metabolismo , Glioma/patología , MicroARNs/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Caveolina 2/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Factor 7 de Crecimiento de Fibroblastos/genética , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Especies Reactivas de Oxígeno/metabolismo
12.
Neurobiol Learn Mem ; 168: 107154, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31904546

RESUMEN

Cognitive impairment in Alzheimer's disease (AD) is characterized by being deficient at learning and memory. Aß1-42 oligomers have been shown to impair rodent cognitive function. We previously demonstrated that activation of α7nAChR, inhibition of p38 or JNK could alleviate Aß-induced memory deficits in Y maze test. In this study, we investigated whether the effects of α7nAChR and MAPKs on Y maze test is reproducible with a hippocampus-dependent spatial memory test such as Morris water maze. We also assessed the possible co-existence of hippocampus-independent recognition memory dysfunction using a novel object recognition test and an alternative and stress free hippocampus-dependent recognition memory test such as the novel place recognition. Besides, previous research from our lab has shown that MAPKs pathways regulate Aß internalization through mediating α7nAChR. In our study, whether MAPKs pathways exert their functions in cognition by modulating α7nAChR through regulating glutamate receptors and synaptic protein, remain little known. Our results showed that activation of α7nAChR restored spatial memory, novel place recognition memory, and short-term and long-term memory in novel object recognition. Inhibition of p38 restored spatial memory and short-term and long-term memory in novel object recognition. Inhibition of ERK restored short-term memory in novel object recognition and novel place recognition memory. Inhibition of JNK restored spatial memory, short-term memory in novel object recognition and novel place recognition memory. Beside this, the activation of α7nAChR, inhibition of p38 or JNK restored Aß-induced levels of NMDAR1, NMDAR2A, NMDAR2B, GluR1, GluR2 and PSD95 in Aß-injected mice without influencing synapsin 1. In addition, these treatments also recovered the expression of acetylcholinesterase (AChE). Finally, we found that the inhibition of p38 or JNK resulted in the upregulation of α7nAChR mRNA levels in the hippocampus. Our results indicated that inhibition of p38 or JNK MAPKs could alleviate Aß-induced spatial memory deficits through regulating activation of α7nAChR via recovering memory-related proteins. Moreover, p38, ERK and JNK MAPKs exert different functions in spatial and recognition memory.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Cognición/fisiología , Sistema de Señalización de MAP Quinasas , Aprendizaje por Laberinto/fisiología , Fragmentos de Péptidos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/administración & dosificación , Animales , Modelos Animales de Enfermedad , MAP Quinasa Quinasa 4/metabolismo , Ratones Endogámicos C57BL , Fragmentos de Péptidos/administración & dosificación , Reconocimiento en Psicología/fisiología
13.
Eur J Neurosci ; 52(1): 2694-2704, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31471985

RESUMEN

Single-housed stress elicits a range of social isolation-related behavioral and neurobiological abnormalities. To investigate single housing-induced behavioral changes and sex differences on stress outcomes, we examined single-housed stress-induced learning and memory impairment, depression-like behaviors, neuroplasticity abnormalities and underlying mechanism. The results showed that male and female mice socially isolated for 8 weeks had significantly decreased memory acquisition, as demonstrated in the learning curve of the Morris water maze task. Memory consolidation and retrieval were also decreased in both the single-housed male and female mice. These findings were corroborated further by the two classical animal models, Y-maze and novel object recognition tests, as demonstrated by reduced spontaneous alternation and recognition index in both sexes of single-housed mice. Subsequent studies suggested that single-housed male mice exhibited increased immobility time in both the forced swim and tail suspension tests, while the female mice only exhibited increased immobility time in the tail suspension test. Moreover, single-housed stress significantly decreased the apical and basal branch points, dendritic length, and spine density in the CA1 of hippocampal neurons in both male and female mice. These effects were consistent with decreased neuroplasticity and neuroprotective-related molecules such as synaptophysin, PSD95, PKA, pCREB and BDNF expression. These findings suggest that loss of neuronal remodeling and neuroprotective mechanisms due to single housing are involved in behavioral changes in both male and female mice. The results provide further evidence that neuroplasticity-related signaling plays a crucial role in isolation-induced effects on neuropsychiatric behavioral deficits in both sexes.


Asunto(s)
Disfunción Cognitiva , Depresión , Animales , Conducta Animal , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Femenino , Hipocampo , Vivienda , Masculino , Aprendizaje por Laberinto , Ratones , Plasticidad Neuronal
14.
Neurochem Int ; 133: 104610, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31778727

RESUMEN

Our previous data indicated that tanshinone IIA (tan IIA) improves learning and memory in a mouse model of Alzheimer's disease (AD) induced by streptozotocin via restoring cholinergic function, attenuating oxidative stress and blocking p38 MAPK signal pathway activation. This study aims to estimate whether tan IIA inhibits endoplasmic reticulum (ER) stress-induced apoptosis to prevent cognitive decline in APP/PS1 transgenic mice. Tan IIA (10 mg/kg and 30 mg/kg) was intraperitoneally administered to the six-month-old APP/PS1 mice for 30 consecutive days. ß-amyloid (Aß) plaques were measured by immunohistochemisty and Thioflavin S staining, apoptotic cells were observed by TUNEL, ER stress markers and apoptosis signaling proteins were investigated by western blotting and RT-PCR. Our results showed that tan IIA significantly ameliorates cognitive deficits and improves spatial learning ability of APP/PS1 mice in the nest-building test, novel object recognition test and Morris water maze test. Furthermore, tan IIA significantly reduced the deposition of Aß plaques and neuronal apoptosis, and markedly prevented abnormal expression of glucose regulated protein 78 (GRP78), initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α), activating transcription factor 6 (ATF6), as well as suppressed the activation of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) pathways in the parietal cortex and hippocampus. Moreover, tan IIA induced an up-regulation of the Bcl-2/Bax ratio and down-regulation of caspase-3 protein activity. Taken together, the above findings indicated that tan IIA improves learning and memory through attenuating Aß plaques deposition and inhibiting ER stress-induced apoptosis. These results suggested that tan IIA might become a promising therapeutic candidate drug against AD.


Asunto(s)
Abietanos/farmacología , Apoptosis/efectos de los fármacos , Cognición/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Precursor de Proteína beta-Amiloide/genética , Animales , Apoptosis/genética , Trastornos del Conocimiento/metabolismo , Chaperón BiP del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Endorribonucleasas/farmacología , Femenino , Hipocampo/metabolismo , Masculino , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/metabolismo
15.
Aging (Albany NY) ; 11(22): 10266-10283, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31770107

RESUMEN

OBJECTIVE: This study was conducted to elucidate the long non-coding RNA FOXD2-AS1 (lncRNA FOXD2-AS1) expression in glioma and its mechanism on the biological features of glioma cells and the drug resistance of temozolomide (TMZ). RESULTS: Highly expressed FOXD2-AS1 was found in glioma. There was more powerful chemotherapeutic resistance of TMZ resistant cell lines than that of the parent cell lines. Silence of FOXD2-AS1 suppressed proliferation and drug resistance and promoted apoptosis of drug-resistant glioma cells. Overexpressed FOXD2-AS1 presented an opposite trend. FOXD2-AS1 could be used as a competing endogenous RNA to adsorb miR-98-5p, thereby up-regulating CPEB4. CONCLUSION: Our study suggests that down-regulated FOXD2-AS1 repressed invasion, proliferation, migration and drug resistance of drug-resistant glioma cells while stimulating their apoptosis via increasing miR-98-5p and inhibiting CPEB4 expression. METHODS: FOXD2-AS1, microRNA-98-5p (miR-98-5p) and cytoplasmic polyadenylation element binding (CPEB4) expression in glioma tissues were tested. Expression of E-cadherin, N-cadherin and Vimentin in glioma cells were explored. A series of assays were conducted to detect the function of FOXD2-AS1 in migration, proliferation, apoptosis, and invasion of glioma cells. Changes in drug-resistance of cells under TMZ treatment were examined, and tumor formation in nude mice was performed to test the changes of drug resistance in vivo.


Asunto(s)
Resistencia a Antineoplásicos/genética , Glioma/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Invasividad Neoplásica/genética
16.
J Alzheimers Dis ; 71(2): 443-460, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31403945

RESUMEN

Cyclin-dependent kinase 5 (CDK5) in adipose tissue mediates peroxisome proliferator-activated receptor γ (PPARγ) phosphorylation at Ser273 to inhibit its activity, causing PPARγ target gene expression changes. Among these, insulin-degrading enzyme (IDE) degrades amyloid-ß peptide (Aß), the core pathological product of Alzheimer's disease (AD), whereas ß-amyloid cleavage enzyme 1 (BACE1) hydrolyzes amyloid-ß protein precursor (AßPP). Therefore, we speculated that CDK5 activity in the brain might participate in Aß production, thereby functioning as a key molecule in AD pathogenesis. To confirm this hypothesis, we transduced primary rat hippocampal neurons using CDK5-expressing lentiviral vectors. CDK5 overexpression increased PPARγ Ser273 phosphorylation, decreased IDE expression, increased BACE1 and AßPP expression, increased Aß levels, and induced neuronal apoptosis. The CDK5 inhibitor roscovitine effectively reversed these CDK5 overexpression-mediated effects. Moreover, silencing of the Cdk5 gene via CDK5 shRNA-expressing lentiviral vectors in primary hippocampal neurons did not exert any protective effect against normal neuronal apoptosis, nor were significant effects observed on Aß levels, PPARγ phosphorylation, or PPARγ target gene expression in the cells. However, Cdk5 gene silencing exhibited a neuroprotective effect in the Aß-induced AD neuron model by effectively inhibiting the Aß-induced neuronal apoptosis, PPARγ phosphorylation, PPARγ expression downregulation, and PPARγ target gene expression changes, and reducing Aß levels. In conclusion, this study demonstrated that CDK5 played an important role in the pathogenesis of AD. Specifically, CDK5 participated in Aß production by regulating PPARγ phosphorylation. Targeted therapy against CDK5 could effectively reduce and reverse the neurotoxic effects of Aß and may represent a novel approach for AD treatment.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Quinasa 5 Dependiente de la Ciclina/biosíntesis , Hipocampo/metabolismo , Neuronas/metabolismo , PPAR gamma/metabolismo , Fragmentos de Péptidos/toxicidad , Animales , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina/genética , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , PPAR gamma/antagonistas & inhibidores , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley
17.
Front Aging Neurosci ; 11: 178, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379559

RESUMEN

It has been demonstrated that peroxisome proliferator-activated receptor γ (PPARγ) can regulate the transcription of its target gene, insulin-degrading enzyme (IDE), and thus enhance the expression of the IDE protein. The protein can degrade ß amyloid (Aß), a core pathological product of Alzheimer's disease (AD). PPARγ can also regulate the transcription of other target gene, ß-amyloid cleavage enzyme 1 (BACE1), and thus inhibit the expression of the BACE1 protein. BACE1 can hydrolyze amyloid precursor protein (APP), the precursor of Aß. In adipose tissue, PPARγ agonists can inhibit the phosphorylation of PPARγ by inhibiting cyclin-dependent kinase 5 (CDK5), which in turn affects the expression of target genes regulated by PPARγ. PPARγ agonists may also exert inhibitory effects on the phosphorylation of PPARγ in the brain, thereby affecting the expression of the aforementioned PPARγ target genes and reducing Aß levels. The present study confirmed this hypothesis by showing that PPARγ agonist pioglitazone attenuated the neuronal apoptosis of primary rat hippocampal neurons induced by Aß1-42, downregulated CDK5 expression, weakened the binding of CDK5 to PPARγ, reduced PPARγ phosphorylation, increased the expression of PPARγ and IDE, decreased the expression of BACE1, reduced APP production, and downregulated intraneuronal Aß1-42 levels. These effects were inhibited by the PPARγ antagonist GW9662. After CDK5 silencing with CDK5 shRNA, the above effect of pioglitazone was not observed, except when upregulating the expression of PPARγ in Aß1-42 treated neurons. In conclusion, this study demonstrated that pioglitazone could inhibit the phosphorylation of PPARγ in vitro by inhibiting CDK5 expression, which in turn affected the expression of PPARγ target genes Ide and Bace1, thereby promoting Aß degradation and reducing Aß production. This reduced Aß levels in the brain, thereby exerting neuroprotective effects in an AD model.

18.
Front Neurol ; 10: 383, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31040819

RESUMEN

Objective: Ischemic stroke leads to cellular death and tissue damage by depriving the areas of glucose and oxygen supplies. The effective treatment of stroke remains a challenge for modern medicine. This study used an oxygen-glucose deprivation (OGD) model of human umbilical vein endothelial cells (HUVECs) to mimic ischemic injuries and explored the role and mechanism of intelectin-1. Methods: Intelectin-1 was transduced into the HUVECs using a lentiviral vector. The PI3K/Akt signaling was examined in intelectin-induced eNOS phosphorylation. The PI3K inhibitor LY294002 was dealed in HUVECs. Results: Our results demonstrated an increase in capillary density, decrease in apoptotic cells, and increase in HIF-1α protein expression following intelectin-1 treatment. Real-time PCR and Western blotting revealed the increased intelectin-1 expression alongside eNOS and Akt phosphorylation with enhanced bcl-2 expression under OGD. Capillary density decreased significantly after LY294002 treatment. Conclusion: These results suggest intelectin-1 promotes angiogenesis, inhibits oxidative stress and reduces apoptosis by stimulating the Akt-eNOS signaling pathway in response to ischemia in vitro.

19.
Int J Biochem Cell Biol ; 107: 82-91, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30578955

RESUMEN

Endoplasmic reticulum (ER) stress caused by ß-amyloid protein (Aß) may play an important role in the pathogenesis of Alzheimer disease (AD). Our previous data have indicated that tanshinone IIA (tan IIA) protected primary neurons from Aß induced neurotoxicity. To further explore the neuroprotection of tan IIA, here we study the effects of tan IIA on the ER stress response in oligomeric Aß1-42 (oAß1-42)-induced SH-SY5Y cell injury. Our data showed that tan IIA pretreatment could increase cell viability and inhibit apoptosis caused by oAß1-42. Furthermore, tan IIA markedly suppressed ER dilation and prevented oAß1-42-induced abnormal expression of glucose regulated protein 78 (GRP78), initiation factor 2α (eIF2α), activating transcription factor 6 (ATF6), as well as inhibited the activation of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) pathways. Moreover, tan IIA ameliorated oAß1-42-induced Bcl-2/Bax ratio reduction, prevented cytochrome c translocation into cytosol from mitochondria, reduced oAß1-42-induced cleavage of caspase-9 and caspase-3, suppressed caspase-3/7 activity, and increased mitochondrial membrane potential (MMP) and ATP content. Meanwhile, oAß1-42-induced cell apoptosis and activation of ER stress can also be attenuated by the inhibitor of ER stress 4-phenylbutyric acid (4-PBA). Taken together, these data indicated that tan IIA protects SH-SY5Y cells against oAß1-42-induced apoptosis through attenuating ER stress, modulating CHOP and JNK pathways, decreasing the expression of cytochrome c, cleaved caspase-9 and cleaved caspase-3, as well as increasing the ratio of Bcl-2/Bax, MMP and ATP content. Our results strongly suggested that tan IIA may be effective in treating AD associated with ER stress.


Asunto(s)
Abietanos/farmacología , Péptidos beta-Amiloides/toxicidad , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fragmentos de Péptidos/toxicidad , Línea Celular Tumoral , Citoprotección/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Respuesta de Proteína Desplegada/efectos de los fármacos
20.
Neuropeptides ; 73: 96-106, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30579679

RESUMEN

Alzheimer's disease (AD) is one of the major disabling and lethal diseases for aged individuals worldwide. To date, there are more than 10 hypotheses proposed for AD pathology. The beta-amyloid (Aß) cascade hypothesis is the most widely accepted and proposes that the accumulation of Aß in the brain is one potential mechanism for AD pathogenesis. Because some Aß-overloaded patients do not have AD syndrome, this hypothesis is challenged from time to time. More recently, it has been shown that intracellular Aß plays a key role in AD pathology. Aß is internalized by receptors distributed on the cell membrane. Among these receptors, the alpha7 nicotinic acetylcholine receptor (α7 nAChR) has been shown to play an important role in AD. The α7 nAChR is a ligand-gated ion channel and is expressed in pivotal brain regions (e.g., the cerebral cortex and hippocampus) responsible for cognitive functions. The α7 nAChR is localized both presynaptically and postsynaptically, where it activates intracellular signaling cascades. Its agonist has been investigated in clinical studies to improve cognitive functions in AD. Although many studies have shown the importance of the α7 nAChR in AD, little is known regarding its role in AD pathology. Therefore, in the current review, we summarized the basic information regarding the structures and functions of the α7 nAChR, the distribution and expression of the α7 nAChR, and the role of the α7 nAChR in mediating Aß internalization. We subsequently focused on introducing the comprehensive α7 nAChR related signaling pathways and how these signaling pathways are integrated with the α7 nAChR to play a role in AD. Finally, we stressed the AD therapy that targets the α7 nAChR.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Humanos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...