Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Biology (Basel) ; 12(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38132306

RESUMEN

Exosomes are a subtype of extracellular vesicles (EVs) with a diameter of 30~150 nm (averaging ~100 nm) that are primarily produced through the endosomal pathway, and carry various components such as lipids, proteins, RNA, and other small molecular substances. Exosomes can mediate intercellular communication through the bioactive substances they carry, thus participating in different physiological activities. Metabolic syndrome (MS) is a disease caused by disturbances in the body's metabolism, mainly including insulin resistance (IR), diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), hyperlipidemia, and atherosclerosis (AS). Recent studies have shown that exosomes are closely related to the occurrence and development of MS. Exosomes can act as messengers to mediate signaling transductions between metabolic cells in the organism and play a bidirectional regulatory role in the MS process. This paper mainly reviews the components, biogenesis, biological functions and potential applications of exosomes, and exosomes involved in the pathogenesis of MS as well as their clinical significance in MS diagnosis.

3.
Diabetol Metab Syndr ; 15(1): 35, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871006

RESUMEN

Diabetic cardiomyopathy (DCM) is a serious cardiovascular complication and the leading cause of death in diabetic patients. Patients typically do not experience any symptoms and have normal systolic and diastolic cardiac functions in the early stages of DCM. Because the majority of cardiac tissue has already been destroyed by the time DCM is detected, research must be conducted on biomarkers for early DCM, early diagnosis of DCM patients, and early symptomatic management to minimize mortality rates among DCM patients. Most of the existing implemented clinical markers are not very specific for DCM, especially in the early stages of DCM. Recent studies have shown that a number of new novel markers, such as galactin-3 (Gal-3), adiponectin (APN), and irisin, have significant changes in the clinical course of the various stages of DCM, suggesting that we may have a positive effect on the identification of DCM. As a summary of the current state of knowledge regarding DCM biomarkers, this review aims to inspire new ideas for identifying clinical markers and related pathophysiologic mechanisms that could be used in the early diagnosis and treatment of DCM.

4.
Cardiovasc Res ; 119(4): 1062-1076, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36647784

RESUMEN

AIMS: We have shown that human cardiac muscle patches (hCMPs) containing three different types of cardiac cells-cardiomyocytes (CMs), smooth muscle cells (SMCs), and endothelial cells (ECs), all of which were differentiated from human pluripotent stem cells (hPSCs)-significantly improved cardiac function, infarct size, and hypertrophy in a pig model of myocardial infarction (MI). However, hPSC-derived CMs (hPSC-CMs) are phenotypically immature, which may lead to arrhythmogenic concerns; thus, since hPSC-derived cardiac fibroblasts (hPSC-CFs) appear to enhance the maturity of hPSC-CMs, we compared hCMPs containing hPSC-CMs, -SMCs, -ECs, and -CFs (4TCC-hCMPs) with a second hCMP construct that lacked hPSC-CFs but was otherwise identical [hCMP containing hPSC-CMs, -AECs, and -SMCs (3TCC-hCMPs)]. METHODS AND RESULTS: hCMPs were generated in a fibrin scaffold. MI was induced in severe combined immunodeficiency (SCID) mice through permanent coronary artery (left anterior descending) ligation, followed by treatment with cardiac muscle patches. Animal groups included: MI heart treated with 3TCC-hCMP; with 4TCC-hCMP; MI heart treated with no patch (MI group) and sham group. Cardiac function was evaluated using echocardiography, and cell engraftment rate and infarct size were evaluated histologically at 4 weeks after patch transplantation. The results from experiments in cultured hCMPs demonstrate that the inclusion of cardiac fibroblast in 4TCC-hCMPs had (i) better organized sarcomeres; (ii) abundant structural, metabolic, and ion-channel markers of CM maturation; and (iii) greater conduction velocities (31 ± 3.23 cm/s, P < 0.005) and action-potential durations (APD50 = 365 ms ± 2.649, P < 0.0001; APD = 408 ms ± 2.757, P < 0.0001) than those (velocity and APD time) in 3TCC-hCMPs. Furthermore, 4TCC-hCMPs transplantation resulted in better cardiac function [ejection fraction (EF) = 49.18% ± 0.86, P < 0.05], reduced infarct size (22.72% ± 0.98, P < 0.05), and better engraftment (15.99% ± 1.56, P < 0.05) when compared with 3TCC-hCMPs (EF = 41.55 ± 0.92%, infarct size = 39.23 ± 4.28%, and engraftment = 8.56 ± 1.79%, respectively). CONCLUSION: Collectively, these observations suggest that the inclusion of hPSC-CFs during hCMP manufacture promotes hPSC-CM maturation and increases the potency of implanted hCMPs for improving cardiac recovery in mice model of MI.


Asunto(s)
Lesiones Cardíacas , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Células Madre Pluripotentes , Humanos , Ratones , Animales , Porcinos , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/patología , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Lesiones Cardíacas/metabolismo
5.
Environ Toxicol ; 38(4): 770-782, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36602409

RESUMEN

Environmental pollutants are recognized as one of the major concerns for public health. The free-living nematode Caenorhabditis elegans are widely used to evaluate the toxicity of environmental contaminants in biomonitoring researches. In the present study, a new transgenic strain, rps-30-/- ;RFP-RPS-30UbL was generated, with constitutively active rps-30 promoter used to control the expression of RFP-RPS-30UbL fusion protein. We found RFP-RPS-30UbL would accumulate to form 'rod-like' structures, when worms were exposed to environmental contaminants, including Cd, Hg, Pb, As, Paraquat and Dichlorvos. The number of the 'rod-like' structures was induced by environmental contaminants in a concentration- and time-dependent manner. The 'rod-like' structure formation could be detectable in response to the concentration of each contaminant as low as 24-h LC50 × 10-7 , and the detectable time could be within 2 h. Detecting the transcription and expression levels of RFP-RPS-30UbL in worms exposed to different kinds of environmental contaminants showed that the expression level of RFP-RPS-30UbL was not regulated by environmental contaminants, and the number differences of 'rod-like' structures were just due to the morphological change of RFP-RPS-30UbL from dispersion to accumulation induced by environmental contaminants. In addition, this transgenic strain was developed in rps-30-/- homozygous worm, which was a longevity strain. Detection of lifespan and brood size showed that rps-30-/- ;RFP-RPS-30UbL transgenic worm was more suitable to be cultured and used further than N2;GFP-RPS-30UbL , for expressing RPS-30UbL in wild type N2 worms shortened the lifespan and deceased the brood size. Therefore, rps-30-/- ;RFP-RPS-30UbL transgenic worm might play a potential role in versatile environmental biomonitoring, with the advantage of not only the convenient and quick fluorescence-based reporter assay, but also the quantificational evaluation of the toxicities of environmental contaminants using 'rod-like' structures with high sensitivity, off-limited the expression level of the reporter protein.


Asunto(s)
Proteínas de Caenorhabditis elegans , Contaminantes Ambientales , Nematodos , Animales , Caenorhabditis elegans/genética , Contaminantes Ambientales/toxicidad , Nematodos/metabolismo , Regiones Promotoras Genéticas , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
6.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232770

RESUMEN

Hepatic glucose production (HGP) is an important component of glucose homeostasis, and deregulated HGP, particularly through gluconeogenesis, contributes to hyperglycemia and pathology of type-2 diabetes (T2D). It has been shown that the gluconeogenic gene expression is governed primarily by the transcription factor cAMP-response element (CRE)-binding protein (CREB) and its coactivator, CREB-regulated transcriptional coactivator 2 (CRTC2). Recently, we have discovered that Sam68, an adaptor protein and Src kinase substrate, potently promotes hepatic gluconeogenesis by promoting CRTC2 stability; however, the detailed mechanisms remain unclear. Here we show that in response to glucagon, Sam68 increases CREB/CRTC2 transactivity by interacting with CRTC2 in the CREB/CRTC2 complex and occupying the CRE motif of promoters, leading to gluconeogenic gene expression and glucose production. In hepatocytes, glucagon promotes Sam68 nuclear import, whereas insulin elicits its nuclear export. Furthermore, ablation of Sam68 in hepatocytes protects mice from high-fat diet (HFD)-induced hyperglycemia and significantly increased hepatic and peripheral insulin sensitivities. Thus, hepatic Sam68 potentiates CREB/CRTC2-mediated glucose production, contributes to the pathogenesis of insulin resistance, and may serve as a therapeutic target for T2D.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diabetes Mellitus Tipo 2 , Gluconeogénesis , Glucosa , Hepatocitos , Resistencia a la Insulina , Proteínas de Unión al ARN , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Expresión Génica , Glucagón/metabolismo , Gluconeogénesis/genética , Gluconeogénesis/fisiología , Glucosa/metabolismo , Hepatocitos/metabolismo , Hepatocitos/fisiología , Homeostasis , Hiperglucemia/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Ratones , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
7.
Front Physiol ; 13: 1009566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187782
8.
J Extracell Vesicles ; 11(10): e12246, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36250966

RESUMEN

Toxoplasma gondii uracil phosphoribosyltransferase (UPRT) converts 4-thiouracil (4TUc) into 4-thiouridine (4TUd), which is incorporated into nascent RNAs and can be biotinylated, then labelled with streptavidin conjugates or isolated via streptavidin-affinity methods. Here, we generated mice that expressed T. gondii UPRT only in cardiomyocytes (CM UPRT mice) and tested our hypothesis that CM-derived miRNAs (CM miRs) are transferred into remote organs after myocardial infarction (MI) by small extracellular vesicles (sEV) that are released from the heart into the peripheral blood (PB sEV). We found that 4TUd was incorporated with high specificity and sensitivity into RNAs isolated from the hearts and PB sEV of CM UPRT mice 6 h after 4TUc injection. In PB sEV, 4TUd was incorporated into CM-specific/enriched miRs including miR-208a, but not into miRs with other organ or tissue-type specificities. 4TUd-labelled miR208a was also present in lung tissues, especially lung endothelial cells (ECs), and CM-derived miR-208a (CM miR-208a) levels peaked 12 h after experimentally induced MI in PB sEV and 24 h after MI in the lung. Notably, miR-208a is expressed from intron 29 of α myosin heavy chain (αMHC), but αMHC transcripts were nearly undetectable in the lung. When PB sEV from mice that underwent MI (MI-PB sEV) or sham surgery (Sham-PB sEV) were injected into intact mice, the expression of Tmbim6 and NLK, which are suppressed by miR-208a and cooperatively regulate inflammation via the NF-κB pathway, was lower in the lungs of MI-PB sEV-treated animals than the lungs of animals treated with Sham-PB sEV or saline. In MI mice, Tmbim6 and NLK were downregulated, whereas endothelial adhesion molecules and pro-inflammatory cells were upregulated in the lung; these changes were significantly attenuated when the mice were treated with miR-208a antagomirs prior to MI surgery. Thus, CM UPRT mice enables us to track PB sEV-mediated transport of CM miRs and identify an miR-208a-mediated mechanism by which myocardial injury alters the expression of genes and inflammatory response in the lung.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Infarto del Miocardio , Animales , Ratones , Antagomirs/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Pulmón/metabolismo , MicroARNs/genética , Infarto del Miocardio/genética , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , FN-kappa B/genética , Estreptavidina/genética , Tiouridina/metabolismo
9.
Front Bioeng Biotechnol ; 10: 908848, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957645

RESUMEN

Cardiomyocytes (CMs), endothelial cells (ECs), smooth-muscle cells (SMCs), and cardiac fibroblasts (CFs) differentiated from human induced-pluripotent stem cells (hiPSCs) are the fundamental components of cell-based regenerative myocardial therapy and can be used as in-vitro models for mechanistic studies and drug testing. However, newly differentiated hiPSC-CMs tend to more closely resemble fetal CMs than the mature CMs of adult hearts, and current techniques for improving CM maturation can be both complex and labor-intensive. Thus, the production of CMs for commercial and industrial applications will require more elementary methods for promoting CM maturity. CMs tend to develop a more mature phenotype when cultured as spheroids in a three-dimensional (3D) environment, rather than as two-dimensional monolayers, and the activity of ECs, SMCs, and CFs promote both CM maturation and electrical activity. Here, we introduce a simple and reproducible 3D-culture-based process for generating spheroids containing all four cardiac-cell types (i.e., cardiac spheroids) that is compatible with a wide range of applications and research equipment. Subsequent experiments demonstrated that the inclusion of vascular cells and CFs was associated with an increase in spheroid size, a decline in apoptosis, an improvement in sarcomere maturation and a change in CM bioenergetics.

10.
Parasit Vectors ; 15(1): 46, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123560

RESUMEN

BACKGROUND: Angiostrongylus cantonensis L5, parasitizing human cerebrospinal fluid, causes eosinophilic meningitis, which is attributed to tissue inflammatory responses caused primarily by the high percentage of eosinophils. Eosinophils are also involved in killing helminths, using the peroxidative oxidation and hydrogen peroxide (H2O2) generated by dismutation of superoxide produced during respiratory burst. In contrast, helminthic worms have evolved to attenuate eosinophil-mediated tissue inflammatory responses for their survival. In previous study, we demonstrated the extracellular function of Acan-Gal-1 in inducing the apoptosis of macrophages. Here, the intracellular functions of Acan-Gal-1 were investigated, aiming to further reveal the mechanism involved in A. cantonensis L5 worms surviving inflammatory responses in the human central nervous system. METHODS: In this study, a model organism, Caenorhabditis elegans, was used as a surrogate to investigate the intracellular functions of Acan-Gal-1 in protecting the worm from its host's immune attacks. First, structural characterization of Acan-Gal-1 was analyzed using bioinformatics; second, qRT-PCR was used to monitor the stage specificity of Acan-gal-1 expression in A. cantonensis. Microinjections were performed to detect the tissue specificity of lec-1 expression, the homolog of Acan-gal-1 in C. elegans. Third, microinjection was performed to develop Acan-gal-1::rfp transgenic worms. Then, oxidative stress assay and Oil Red O fat staining were used to determine the functions of Acan-Gal-1 in C. elegans. RESULTS: The results of detecting the stage specificity of Acan-gal-1 expression showed that Acan-Gal-1 was upregulated in both L5 and adult worms. Detection of the tissue specificity showed that the homolog of Acan-gal-1 in C. elegans, lec-1 was expressed ubiquitously and mainly localized in cuticle. Investigating the intracellular functions of Acan-Gal-1 in the surrogate C. elegans showed that N2 worms expressing pCe-lec-1::Acan-gal-1::rfp, with lipid deposition reduced, were significantly resistant to oxidative stress; lec-1 mutant worms, where lipid deposition increased, showed susceptible to oxidative stress, and this phenotype could be rescued by expressing pCe-lec-1::Acan-gal-1::rfp. Expressing pCe-lec-1::Acan-gal-1::rfp or lec-1 RNAi in fat-6;fat-7 double-mutant worms, where fat stores were reduced, had no significant effect on the oxidative stress tolerance. CONCLUSION: In C. elegans worms, upregulated Acan-Gal-1 plays a defensive role against damage due to oxidative stress for worm survival by reducing fat deposition. This might indicate the mechanism by which A. cantonensis L5 worms, with upregulated Acan-Gal-1, survive the immune attack of eosinophils in the human central nervous system.


Asunto(s)
Angiostrongylus cantonensis , Caenorhabditis elegans/parasitología , Galectina 1 , Metabolismo de los Lípidos , Estrés Oxidativo , Tejido Adiposo , Angiostrongylus cantonensis/genética , Animales , Caenorhabditis elegans/genética , Galectina 1/genética , Peróxido de Hidrógeno
11.
Cardiol Cardiovasc Med ; 5(5): 454-470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497977

RESUMEN

The development of the heart follows a synergic action of several signaling pathways during gestational, pre- & postnatal stages. The current study aimed to investigate whether the myocardium experiences transcriptional changes during the transition from post-natal to adult hood stages. Herein, we used C57/B16/J mice at 4 (28- days; post-natal/PN) and 20 weeks (adulthood/AH) of ages and employed the next generation RNAseq (NGS) to profile the transcriptome and echocardiography analysis to monitor the structural/functional changes in the heart. NGS-based RNA-seq revealed that 1215 genes were significantly upregulated and 2549 were down regulated in the AH versus PN hearts, indicating a significant transcriptional change during this transition. A synchronized cardiac transcriptional regulation through cell cycle, growth hormones, redox homeostasis and metabolic pathways was noticed in both PN and AH hearts. Echocardiography reveals significant structural and functional (i.e. systolic/diastolic) changes during the transition of PN to adult stage. Particularly, a progressive decline in ejection fraction and cardiac output was observed in AH hearts. These structural adaptations are in line with critical signaling pathways that drive the maturation of heart during AH. Overall, we have presented a comprehensive transcriptomic analysis along with structural-functional relationship during the myocardial development in adult mice.

12.
Theranostics ; 11(16): 7995-8007, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335976

RESUMEN

Rationale: The conserved long non-coding RNA (lncRNA) myocardial infarction associate transcript (Miat) was identified for its multiple single-nucleotide polymorphisms that are strongly associated with susceptibility to MI, but its role in cardiovascular biology remains elusive. Here we investigated whether Miat regulates cardiac response to pathological hypertrophic stimuli. Methods: Both an angiotensin II (Ang II) infusion model and a transverse aortic constriction (TAC) model were used in adult WT and Miat-null knockout (Miat-KO) mice to induce pathological cardiac hypertrophy. Heart structure and function were evaluated by echocardiography and histological assessments. Gene expression in the heart was evaluated by RNA sequencing (RNA-seq), quantitative real-time RT-PCR (qRT-PCR), and Western blotting. Primary WT and Miat-KO mouse cardiomyocytes were isolated and used in Ca2+ transient and contractility measurements. Results: Continuous Ang II infusion for 4 weeks induced concentric hypertrophy in WT mice, but to a lesser extent in Miat-KO mice. Surgical TAC for 6 weeks resulted in decreased systolic function and heart failure in WT mice but not in Miat-KO mice. In both models, Miat-KO mice displayed reduced heart-weight to tibia-length ratio, cardiomyocyte cross-sectional area, cardiomyocyte apoptosis, and cardiac interstitial fibrosis and a better-preserved capillary density, as compared to WT mice. In addition, Ang II treatment led to significantly reduced mRNA and protein expression of the Ca2+ cycling genes Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) and ryanodine receptor 2 (RyR2) and a dramatic increase in global RNA splicing events in the left ventricle (LV) of WT mice, and these changes were largely blunted in Miat-KO mice. Consistently, cardiomyocytes isolated from Miat-KO mice demonstrated more efficient Ca2+ cycling and greater contractility. Conclusions: Ablation of Miat attenuates pathological hypertrophy and heart failure, in part, by enhancing cardiomyocyte contractility.


Asunto(s)
Insuficiencia Cardíaca/genética , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética , Angiotensina II/farmacología , Animales , Apoptosis , Cardiomegalia/genética , Modelos Animales de Enfermedad , Ecocardiografía , Fibrosis , Masculino , Ratones , Ratones Noqueados , Infarto del Miocardio/patología , ARN Largo no Codificante/metabolismo
13.
FASEB J ; 35(8): e21772, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34252225

RESUMEN

Genetic deletion of Src associated in mitosis of 68kDa (Sam68), a pleiotropic adaptor protein prevents high-fat diet-induced weight gain and insulin resistance. To clarify the role of Sam68 in energy metabolism in the adult stage, we generated an inducible Sam68 knockout mice. Knockout of Sam68 was induced at the age of 7-10 weeks, and then we examined the metabolic profiles of the mice. Sam68 knockout mice gained less body weight over time and at 34 or 36 weeks old, had smaller fat mass without changes in food intake and absorption efficiency. Deletion of Sam68 in mice elevated thermogenesis, increased energy expenditure, and attenuated core-temperature drop during acute cold exposure. Furthermore, we examined younger Sam68 knockout mice at 11 weeks old before their body weights deviate, and confirmed increased energy expenditure and thermogenic gene program. Thus, Sam68 is essential for the control of adipose thermogenesis and energy homeostasis in the adult.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Metabolismo Energético , Termogénesis , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Masculino , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/metabolismo
14.
Nat Commun ; 12(1): 3340, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099657

RESUMEN

Hepatic gluconeogenesis is essential for glucose homeostasis and also a therapeutic target for type 2 diabetes, but its mechanism is incompletely understood. Here, we report that Sam68, an RNA-binding adaptor protein and Src kinase substrate, is a novel regulator of hepatic gluconeogenesis. Both global and hepatic deletions of Sam68 significantly reduce blood glucose levels and the glucagon-induced expression of gluconeogenic genes. Protein, but not mRNA, levels of CRTC2, a crucial transcriptional regulator of gluconeogenesis, are >50% lower in Sam68-deficient hepatocytes than in wild-type hepatocytes. Sam68 interacts with CRTC2 and reduces CRTC2 ubiquitination. However, truncated mutants of Sam68 that lack the C- (Sam68ΔC) or N-terminal (Sam68ΔN) domains fails to bind CRTC2 or to stabilize CRTC2 protein, respectively, and transgenic Sam68ΔN mice recapitulate the blood-glucose and gluconeogenesis profile of Sam68-deficient mice. Hepatic Sam68 expression is also upregulated in patients with diabetes and in two diabetic mouse models, while hepatocyte-specific Sam68 deficiencies alleviate diabetic hyperglycemia and improves insulin sensitivity in mice. Thus, our results identify a role for Sam68 in hepatic gluconeogenesis, and Sam68 may represent a therapeutic target for diabetes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Gluconeogénesis/fisiología , Hígado/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Glucemia/metabolismo , Proteínas de Unión al ADN , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica , Glucagón/metabolismo , Gluconeogénesis/genética , Glucosa/metabolismo , Hepatocitos/metabolismo , Homeostasis , Humanos , Hiperglucemia , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Regulación hacia Arriba
15.
Theranostics ; 10(24): 11324-11338, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042285

RESUMEN

Rationale: Cell therapy for myocardial infarction is promising but largely unsuccessful in part due to a lack of mechanistic understanding. Techniques enabling identification of stem cell-specific proteomes in situ in the injured heart may shed light on how the administered cells respond to the injured microenvironment and exert reparative effects. Objective: To identify the proteomes of the transplanted mesenchymal stem cells (MSCs) in the infarcted myocardium, we sought to target a mutant methionyl-tRNA synthetase (MetRSL274G) in MSCs, which charges azidonorleucine (ANL), a methionine analogue and non-canonical amino acid, to tRNA and subsequently to nascent proteins, permitting isolation of ANL-labeled MSC proteomes from ischemic hearts by ANL-alkyne based click reaction. Methods and Results: Murine MSCs were transduced with lentivirus MetRSL274G and supplemented with ANL; the ANL-tagged nascent proteins were visualized by bio-orthogonal non-canonical amino-acid tagging, spanning all molecular weights and by fluorescent non-canonical amino-acid tagging, displaying strong fluorescent signal. Then, the MetRSL274G-transduced MSCs were administered to the infarcted or Sham heart in mice receiving ANL treatment. The MSC proteomes were isolated from the left ventricular protein lysates by click reaction at days 1, 3, and 7 after cell administration, identified by LC/MS. Among all identified proteins (in Sham and MI hearts, three time-points each), 648 were shared by all 6 groups, accounting for 82±5% of total proteins in each group, and enriched under mitochondrion, extracellular exosomes, oxidation-reduction process and poly(A) RNA binding. Notably, 26, 110 and 65 proteins were significantly up-regulated and 11, 28 and 19 proteins were down-regulated in the infarcted vs. Sham heart at the three time-points, respectively; these proteins are pronounced in the GO terms of extracellular matrix organization, response to stress and regulation of apoptotic process and in the KEGG pathways of complements and coagulation cascades, apoptosis, and regulators of actin cytoskeleton. Conclusions: MetRSL274G expression allows successful identification of MSC-specific nascent proteins in the infarcted hearts, which reflect the functional states, adaptive response, and reparative effects of MSCs that may be leveraged to improve cardiac repair.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Metionina-ARNt Ligasa/análisis , Infarto del Miocardio/terapia , Miocardio/patología , Animales , Azidas/química , Células Cultivadas , Química Clic , Biología Computacional , Modelos Animales de Enfermedad , Humanos , Metionina-ARNt Ligasa/química , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/metabolismo , Ratones , Infarto del Miocardio/patología , Norleucina/análogos & derivados , Norleucina/química , Proteómica/métodos , Transducción Genética
16.
J Mol Cell Cardiol ; 137: 82-92, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31639388

RESUMEN

OBJECTIVE: The role of Src-associated-in-mitosis-68-kDa (Sam68) in cardiovascular biology has not been studied. A recent report suggests that Sam68 promotes TNF-α-induced NF-κB activation in fibroblasts. Here we sought to dissect the molecular mechanism by which Sam68 regulates NF-κB signaling and its functional significance in vascular injury. APPROACH AND RESULTS: The endothelial denudation injury was induced in the carotid artery of Sam68-null (Sam68-/-) and WT mice. Sam68-/- mice displayed an accelerated re-endothelialization and attenuated neointima hyperplasia, which was associated with a reduced macrophage infiltration and lowered expression of pro-inflammatory cytokines in the injured vessels. Remarkably, the ameliorated vascular remodeling was recapitulated in WT mice after receiving transplantation of bone marrow (BM) from Sam68-/- mice, suggesting the effect was attributable to BM-derived inflammatory cells. In cultured Raw264.7 macrophages, knockdown of Sam68 resulted in a significant reduction in the TNF-α-induced expression of TNF-α, IL-1ß, and IL-6 and in the level of nuclear phospho-p65, indicating attenuated NF-κB activation; and these results were confirmed in peritoneal and BM-derived macrophages of Sam68-/- vs. WT mice. Furthermore, co-immunoprecipitation and mass-spectrometry identified Filamin A (FLNA) as a novel Sam68-interacting protein upon TNF-α treatment. Loss- and gain-of-function experiments suggest that Sam68 and FLNA are mutually dependent for NF-κB activation and pro-inflammatory cytokine expression, and that the N-terminus of Sam68 is required for TRAF2-FLNA interaction. CONCLUSIONS: Sam68 promotes pro-inflammatory response in injured arteries and impedes recovery by interacting with FLNA to stabilize TRAF2 on the cytoskeleton and consequently potentiate NF-κB signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Arterias Carótidas/patología , Inflamación/patología , Proteínas de Unión al ARN/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Filaminas/metabolismo , Eliminación de Gen , Hiperplasia , Mediadores de Inflamación/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Neointima/patología , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
17.
Mol Cell Biol ; 38(18)2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29941492

RESUMEN

Activation of the adaptive response to cellular stress orchestrated by heat shock factor 1 (HSF1), which is an evolutionarily conserved transcriptional regulator of chaperone response and cellular bioenergetics in diverse model systems, is a central feature of organismal defense from environmental and cellular stress. HSF1 activity, induced by proteostatic, metabolic, and growth factor signals, is regulated by posttranscriptional modifications, yet the mechanisms that regulate HSF1 and particularly the functional significance of these modifications in modulating its biological activity in vivo remain unknown. HSF1 phosphorylation at both Ser303 (S303) and Ser307 (S307) has been shown to repress HSF1 transcriptional activity under normal physiological growth conditions. To determine the biological relevance of these HSF1 phosphorylation events, we generated a knock-in mouse model in which S303 and S307 were replaced with alanine (HSF1303A/307A). Our results confirmed that loss of phosphorylation in HSF1303A/307A cells and tissues increases protein stability but also markedly sensitizes HSF1 activation under normal and heat- or nutrient-induced stress conditions. Interestingly, the enhanced HSF1 activation in HSF1303A/307A mice activates a supportive metabolic program that aggravates the development of age-dependent obesity, fatty liver diseases, and insulin resistance. Thus, these findings highlight the importance of a posttranslational mechanism (through phosphorylation at S303 and S307 sites) of regulation of the HSF1-mediated transcriptional program that moderates the severity of nutrient-induced metabolic diseases.


Asunto(s)
Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Sustitución de Aminoácidos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Factores de Transcripción del Choque Térmico/química , Respuesta al Choque Térmico , Humanos , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/genética , Obesidad/metabolismo , Fosforilación , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química
18.
J Biol Chem ; 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28724629

RESUMEN

This article has been withdrawn by the authors. During preparation of this manuscript, a number of errors occurred in the preparation/assembly of Figs 2D, 2E, S1C, S1E, and S4. The authors apologize for not acknowledging that Fig. 6E and 6J represented the same samples and therefore the ß-actin immunoblot was reused. These presentation errors do not impact the underlying scientific findings of the article and the article is being withdrawn so that a corrected manuscript can be submitted for publication. We are sorry for any problems or issues that this may have caused the scientific community.

19.
J Cell Biol ; 216(3): 723-741, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28183717

RESUMEN

Metabolic energy reprogramming facilitates adaptations to a variety of stress conditions and cellular dysfunction, but how the energetic demands are monitored and met in response to physiological stimuli remains elusive. Our data support a model demonstrating that heat shock factor 1 (HSF1), a master transcriptional regulator of the chaperone response, has been coopted from its role as a critical protein quality-control regulator to having a central role in systemic energy sensing and for metabolic adaptation to nutrient availability. We found that in the absence of HSF1, levels of NAD+ and ATP are not efficiently sustained in hepatic cells, largely because of transcriptional repression of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway. Mechanistically, the defect in NAD+ and ATP synthesis linked to a loss of NAD+-dependent deacetylase activity, increased protein acetylation, and impaired mitochondrial integrity. Remarkably, the drop in ATP level caused by HSF1 loss invoked an adaptive response featuring the inhibition of energetically demanding processes, including gluconeogenesis, translation, and lipid synthesis. Our work identifies HSF1 as a central regulator of cellular bioenergetics and protein homeostasis that benefits malignant cell progression and exacerbates development of metabolic diseases.


Asunto(s)
Proteínas de Unión al ADN/genética , Metabolismo Energético/genética , Homeostasis/genética , Hígado/fisiología , Chaperonas Moleculares/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Adenosina Trifosfato/metabolismo , Animales , Regulación de la Expresión Génica/genética , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , NAD/metabolismo , Procesamiento Proteico-Postraduccional/genética
20.
Diabetologia ; 59(10): 2229-39, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27421728

RESUMEN

AIM/HYPOTHESIS: Hepatic forkhead box q1 (FOXQ1) expression levels are regulated by nutritional and pathophysiological status. In this study we investigated the role of FOXQ1 in the regulation of hepatic gluconeogenesis. METHODS: We used multiple mouse and cell models to study the role of FOXQ1 in regulating expression of gluconeogenic genes, and cellular and hepatic glucose production. RESULTS: Expression of hepatic FOXQ1 was regulated by fasting in normal mice and was dysregulated in diabetic mice. Overexpression of FOXQ1 in primary hepatocytes inhibited expression of gluconeogenic genes and decreased cellular glucose output. Hepatic FOXQ1 rescue in db/db and high-fat diet-induced obese mice markedly decreased blood glucose level and improved glucose intolerance. In contrast, wild-type C57 mice with hepatic FOXQ1 deficiency displayed increased blood glucose levels and impaired glucose tolerance. Interestingly, studies into molecular mechanisms indicated that FOXQ1 interacts with FOXO1, thereby blocking FOXO1 activity on hepatic gluconeogenesis, preventing it from directly binding to insulin response elements mapped in the promoter region of gluconeogenic genes. CONCLUSIONS/INTERPRETATION: FOXQ1 is a novel factor involved in regulating hepatic gluconeogenesis, and the decreased FOXQ1 expression in liver may contribute to the development of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Factores de Transcripción Forkhead/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/patología , Dieta Alta en Grasa/efectos adversos , Ayuno/sangre , Factores de Transcripción Forkhead/genética , Gluconeogénesis/genética , Gluconeogénesis/fisiología , Intolerancia a la Glucosa , Hepatocitos/metabolismo , Insulina/metabolismo , Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...