Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Phys Chem Lett ; : 6520-6527, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874524

RESUMEN

As one of the most significant challenges in solid-state batteries, thorough investigation is necessary on the formation process of lithium dendrites in solid-state electrolytes. Here, we reveal that the growth of lithium dendrites in solid electrolytes is a physical-electrochemical reaction process caused by injected lithium ions and electron carriers, which requires a low electrochemical potential. A unique energy band specific to injected Li ions is identified at the bottom of the conduction band, which can be occupied by electron carriers from low-potential electrodes, leading to dendrite formation. In this case, it is quantitatively determined that the employed anodes with higher working voltages (>0.2 V versus Li/Li+) can effectively prevent dendrite formation. Moreover, lithium dendrite formation exclusively occurs during the charging process (i.e., lithium plating), where lithium ions meet electrons at mixed conductive grain boundaries under highly reductive potentials. The proposed model has significant scientific significance and application value.

2.
Ecotoxicol Environ Saf ; 272: 116075, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325273

RESUMEN

Although animal studies have shown the reproductive toxicity of vanadium, less is known about its effects on semen quality in humans. Among 1135 healthy men who were screened as potential semen donors, we investigated the relationships of semen quality with urinary and seminal plasma vanadium levels via inductively coupled plasma-mass spectrometry (ICP-MS). Spearman rank correlation tests and linear regression models were used to assess the correlations between average urinary and within-individual pooled seminal plasma vanadium concentrations (n = 1135). We utilized linear mixed-effects models to evaluate the associations of urinary and seminal plasma vanadium levels (n = 1135) with repeated sperm quality parameters (n = 5576). Seminal plasma vanadium concentrations were not significantly correlated with urinary vanadium concentrations (r = 0.03). After adjusting for possible confounders, we observed inverse relationships of within-individual pooled seminal plasma vanadium levels with total count, semen volume, and sperm concentration (all P values for trend < 0.05). Specifically, subjects in the highest (vs. lowest) tertile of seminal plasma vanadium concentrations had - 11.3% (-16.4%, -5.9%), - 11.1% (-19.1%, -2.4%), and - 20.9% (-29.0%, -11.8%) lower sperm volume, concentration, and total count, respectively; moreover, urinary vanadium levels appeared to be negatively associated with sperm motility. These relationships showed monotonically decreasing dose-response patterns in the restricted cubic spline analyses. Our results demonstrated a poor correlation between urinary and seminal plasma levels of vanadium, and elevated vanadium concentrations in urine and seminal plasma may be adversely related to male semen quality.


Asunto(s)
Análisis de Semen , Semen , Animales , Masculino , Humanos , Semen/química , Vanadio/toxicidad , Vanadio/análisis , Motilidad Espermática , Recuento de Espermatozoides , Espermatozoides/fisiología
3.
J Adv Res ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38354773

RESUMEN

BACKGROUND: Solar cell/supercapacitor integrated devices (SCSD) have made some progress in terms of device structure and electrode materials, but there are still many key challenges in controlling electrode performance and improving the efficiency of integrated devices. AIM OF REVIEW: It is necessary to study how to balance the photoelectric conversion process and the storage process. From the microscopic mechanism of different functional unit materials to the mechanism of macroscopic devices, it is essential to conduct in-depth research. KEY SCIENTIFIC CONCEPTS OF REVIEW: Here, the structures and preparation methods of various types of integrated SCSD were introduced. Then, the strategies for improving the overall performance of integrated devices were evaluated. Finally, the key objectives of reducing the cost of materials, increasing the stability and sustainability of devices were highlighted. Better matching of different functional units of devices was also prospected.

4.
Small ; : e2310829, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38258407

RESUMEN

The pursuit of highly-active and stable catalysts in anodic oxygen evolution reaction (OER) is desirable for high-current-density water electrolysis toward industrial hydrogen production. Herein, a straightforward yet feasible method to prepare WFeRu ternary alloying catalyst on nickel foam is demonstrated, whereby the foreign W, Fe, and Ru metal atoms diffuse into the Ni foam resulting in the formation of inner immobilized ternary alloy. Thanks to the synergistic impact of foreign metal atoms and structural robustness of inner immobilized alloying catalyst, the well-designed WFeRu@NF self-standing anode exhibits superior OER activities. It only requires overpotentials of 245 and 346 mV to attain current densities of 20 and 500 mA cm-2 , respectively. Moreover, the as-prepared ternary alloying catalyst also exhibits a long-term stability at a high-current-density of 500 mA cm-2 for over 45 h, evidencing the inner-immobilization strategy is promising for the development of highly active and stable metal-based catalysts for high-density-current water oxidation process.

5.
Molecules ; 28(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37959724

RESUMEN

Lithium-sulfur (Li-S) batteries have emerged as one of the most hopeful alternatives for energy storage systems. However, the commercialization of Li-S batteries is still confronted with enormous hurdles. The poor conductivity of sulfur cathodes induces sluggish redox kinetics. The shuttling of polysulfides incurs the heavy failure of electroactive substances. Tremendous efforts in experiments to seek efficient catalysts have achieved significant success. Unfortunately, the understanding of the underlying catalytic mechanisms is not very detailed due to the complicated multistep conversion reactions in Li-S batteries. In this review, we aim to give valuable insights into the connection between the catalyst activities and the structures based on theoretical calculations, which will lead the catalyst design towards high-performance Li-S batteries. This review first introduces the current advances and issues of Li-S batteries. Then we discuss the electronic structure calculations of catalysts. Besides, the relevant calculations of binding energies and Gibbs free energies are presented. Moreover, we discuss lithium-ion diffusion energy barriers and Li2S decomposition energy barriers. Finally, a Conclusions and Outlook section is provided in this review. It is found that calculations facilitate the understanding of the catalytic conversion mechanisms of sulfur species, accelerating the development of advanced catalysts for Li-S batteries.

6.
ACS Appl Mater Interfaces ; 15(38): 44809-44819, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37698442

RESUMEN

More than 90% of the global NH3 synthesis is dominated by the Haber-Bosch process, which consumes 2% of the worldwide energy and generates 1.44% of the global carbon emission. The electrochemical N2 reduction reaction (NRR) is regarded as an attractive alternative route to produce NH3 under mild reaction conditions, but the electrocatalysts suffer from the difficulty of N≡N cleavage. In this work, we report a leaf-like MOF-derived Ni/Zn bimetallic co-doped nitrogen-coordinated porous carbon (Ni/Zn-NPC) as a cost-effective NH3 synthesis electrocatalyst. The resultant electrocatalyst achieved a high NH3 production rate of 22.68 µg h-1 mgcat-1 at -1.0 V vs a reversible hydrogen electrode (RHE) in a 0.1 M Na2SO4 electrolyte. The Ni/Zn-NPC material can be called a microwave regenerable catalyst because microwave treatment has proven to be a crucial part of the multi-field coupling to detoxify and make the catalyst reactive, further improving its stability. Density functional theory (DFT) was chosen to explore the mechanism of Ni/Zn-NPC for NRR, providing a profound prediction of the structure of the active site and related reaction pathways and revealing that trace Ni doping optimizes the local coordination environment and N2 adsorption of Zn atoms.

7.
Genes (Basel) ; 14(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37761926

RESUMEN

The mitochondrial genome (mitogenome) possesses several invaluable attributes, including limited recombination, maternal inheritance, a fast evolutionary rate, compact size, and relatively conserved gene arrangement, all of which make it particularly useful for applications in phylogenetic reconstruction, population genetics, and evolutionary research. In this study, we aimed to determine the complete mitogenomes of two morphologically similar Rana species (Rana hanluica and Rana longicrus) using next-generation sequencing. The entire circular mitogenome was successfully identified, with a length of 19,395 bp for R. hanluica and 17,833 bp for R. longicrus. The mitogenomes of both species contained 37 genes, including 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes, and one control region; mitogenome size varied predominantly with the length of the control region. The two synonymous codon usages in 13 PCGs showed that T and A were used more frequently than G and C. The ratios of non-synonymous to synonymous substitutions of all 13 PCGs were <1 in the Rana species, indicating that the PCGs were under purifying selection. Finally, phylogenetic relationship analyses suggested that R. hanluica and R. longicrus were classified in the R. japonica group. Our study provides valuable reference material for the taxonomy of the genus Rana.

8.
Nanoscale ; 15(16): 7202-7226, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37038769

RESUMEN

At present, the problems of high energy consumption and low efficiency in electrocatalytic hydrogen production have limited the large-scale industrial application of this technology. Constructing effective catalysts has become the way to solve these problems. Transition metal alloys have been proved to be very promising materials in hydrogen evaluation reaction (HER). In this study, the related theories and characterization methods of electrocatalysis are summarized, and the latest progress in the application of binary, ternary, and high entropy alloys to HER in recent years is analyzed and studied. The synthesis methods and optimization strategies of transition metal alloys, including composition regulation, hybrid engineering, phase engineering, and morphological engineering were emphatically discussed, and the principles and performance mechanism analysis of these strategies were discussed in detail. Although great progress has been made in alloy catalysts, there is still considerable room for applications. Finally, the challenges, prospects, and research directions of transition metal alloys in the future were predicted.

9.
BMC Genom Data ; 24(1): 5, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36782146

RESUMEN

BACKGROUND: Microsatellites are a ubiquitous occurrence in prokaryotic and eukaryotic genomes. Microsatellites have become one of the most popular classes of genetic markers due to their high reproducibility, multi-allelic nature, co-dominant mode of inheritance, abundance and wide genome coverage. We characterised microsatellites in the genomes and genes of two bat species, Pteropus vampyrus and Miniopterus natalensis. This characterisation was used for gene ontology analysis and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment of coding sequences (CDS). RESULTS: Compared to M. natalensis, the genome size of P. vampyrus is larger and contains more microsatellites, but the total diversity of both species is similar. Mononucleotide and dinucleotide repeats were the most diverse in the genome of the two species. In each bat species, the microsatellite bias was obvious. The microsatellites with the largest number of repeat motifs in P. vampyrus from mononucleotide to hexanucleotide were (A)n, (AC)n, (CAA)n, (AAAC)n, (AACAA)n and (AAACAA)n, with frequencies of 97.94%, 58.75%, 30.53%, 22.82%, 54.68% and 22.87%, respectively, while in M. natalensis were (A)n, (AC)n, (TAT)n, (TTTA)n, (AACAA)n and (GAGAGG)n, with of 92.00%, 34.08%, 40.36%, 21.83%, 25.42% and 12.79%, respectively. In both species, the diversity of microsatellites was highest in intergenic regions, followed by intronic, untranslated and exonic regions and lowest in coding regions. Location analysis indicated that microsatellites were mainly concentrated at both ends of the genes. Microsatellites in the CDS are thus subject to higher selective pressure. In the GO analysis, two unique GO terms were found only in P. vampyrus and M. natalensis, respectively. In KEGG enriched pathway, the biosynthesis of other secondary metabolites and metabolism of other amino acids in metabolism pathways were present only in M. natalensis. The combined biological process, cellular components and molecular function ontology are reflected in the GO analysis and six functional enrichments in KEGG annotation, suggesting advantageous mutations during species evolution. CONCLUSIONS: Our study gives a comparative characterization of the genomes of microsatellites composition in the two bat species. And also allow further study on the effect of microsatellites on gene function as well as provide an insight into the molecular basis for species adaptation to new and changing environments.


Asunto(s)
Quirópteros , Animales , Quirópteros/genética , Reproducibilidad de los Resultados , Repeticiones de Microsatélite/genética , Tamaño del Genoma , Repeticiones de Dinucleótido
10.
ACS Omega ; 7(35): 31442-31447, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092566

RESUMEN

A molecular tweezer trans-di(perylene-3-ylmethanaminobenzo)-18-crown-6 (DP-18C6) incorporating two perylene subunits in a single crown ether core was designed and synthesized as a host for fullerenes. Through the cooperative effect of the perylene subunits and the crown ether moiety, DP-18C6 can efficiently recognize fullerenes including C60, C70, and C76. 1H NMR titration and fluorescence titration experiments demonstrated that DP-18C6 can effectively grasp the fullerene molecule to form a 1:1 host-guest complex. Density functional theory calculations revealed the presence of intermolecular π-π interactions between the perylene subunits of DP-18C6 and the fullerene molecule. More importantly, DP-18C6 exhibited remarkably high binding selectivity for higher fullerenes over C60, revealing potential application for the separation of fullerenes by means of host-guest interactions.

11.
Sci Total Environ ; 848: 157675, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35907542

RESUMEN

A tricolor ratiometric fluorescence sensor was fabricated by mixing blue- and red-emission molecularly imprinted quantum dots (MIP-QDs) with green-emission quantum dots at the optimal ratio. The MIP-QDs were synthesized by coating CdSe/ZnS QDs in polymer by inverse microemulsion method. Compared with single-emission or dual-emission sensors, the tricolor ratiometric fluorescence sensor provided a wider range of color variations for visual DBP detection. The ratio fluorescence value I530/(I450 + I630) of the tricolor ratiometric fluorescence sensor linearly changed within the concentration of 2.0-20.0 × 103 µg/L DBP. The correlation coefficient was 0.9910, and the limits of detection were 1.0 µg/kg and 0.65 µg/L in fish and seawater, respectively. Meanwhile, the fluorescence color gradually changed from purple to plum to pink to salmon to yellowish green and finally to green. The recoveries of DBP in fish and seawater were 84.3 %-91.4 % and 88.3 %-110.3 %, respectively. Moreover, no obvious differences were observed between the detection results of the tricolor ratiometric fluorescence sensor and gas chromatography-tandem mass spectrometry. The tricolor ratiometric fluorescence sensor constructed herein provides an ideal choice for rapid and intuitive DBP detection in environmental and aquatic products.


Asunto(s)
Impresión Molecular , Nanopartículas , Animales , Dibutil Ftalato , Colorantes Fluorescentes , Cromatografía de Gases y Espectrometría de Masas , Impresión Molecular/métodos , Polímeros/química , Agua de Mar
12.
Front Plant Sci ; 13: 912293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646038

RESUMEN

Giant panda could have bamboo as their exclusive diet for about 2 million years because of the contribution of numerous enzymes produced by their gut bacteria, for instance laccases. Laccases are blue multi-copper oxidases that catalyze the oxidation of a broad spectrum of phenolic and aromatic compounds with water as the only byproduct. As a "green enzyme," laccases have potential in industrial applications, for example, when dealing with degradation of recalcitrant biopolymers, such as lignin. In the current study, a bacterial laccase, Lac51, originating from Pseudomonas putida and identified in the gut microbiome of the giant panda's gut was transiently expressed in the non-food plant Nicotiana benthamiana and characterized. Our results show that recombinant Lac51 exhibits bacterial laccase properties, with optimal pH and temperature at 7-8 and 40°C, respectively, when using syringaldazine as substrate. Moreover, we demonstrate the functional capability of the plant expressed Lac51 to oxidize lignin using selected lignin monomers that serve as substrates of Lac51. In summary, our study demonstrates the potential of green and non-food plants as a viable enzyme production platform for bacterial laccases. This result enriches our understanding of plant-made enzymes, as, to our knowledge, Lac51 is the first functional recombinant laccase produced in plants.

13.
Sci Total Environ ; 843: 156925, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35753451

RESUMEN

A novel molecularly imprinted electrochemiluminescence (MIECL) sensor based on the luminescence of molecularly imprinted polymer-perovskite (MIP-CsPbBr3) layer and Ru(bpy)32+ was fabricated for simazine detection. MIP-CsPbBr3 layers were immobilized onto the surface of glassy carbon electrode as the capture and signal amplification probe, and Ru(bpy)32+ and co-reactant tripropylamine exhibited stronger electrochemiluminescence (ECL) emission. Under optimal conditions, the ECL signal of the MIECL sensor was linearly quenched, with the logarithm of simazine concentration ranging from 0.1 µg/L to 500.0 µg/L, correlation coefficient of 0.9947, and limit of detection of 0.06 µg/L. The practicality of the developed MIECL sensor method for simazine determination in aquatic samples was validated. Excellent recoveries of 86.5 %-103.9 % with relative standard deviation below 1.6 % were obtained for fish and shrimp samples at three different spiked concentrations. The MIECL sensor exhibited excellent selectivity, sensitivity, reproducibility, accuracy, and precision for simazine determination in actual aquatic samples.


Asunto(s)
Técnicas Electroquímicas , Mediciones Luminiscentes , Animales , Compuestos de Calcio , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Óxidos , Reproducibilidad de los Resultados , Simazina , Titanio
14.
J Colloid Interface Sci ; 606(Pt 1): 728-735, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34416462

RESUMEN

Developing new electrode materials is one of the keys to improving the energy density of supercapacitors. In this article, a novel cobalt polysulfide/carbon nanofibers (C,N-CoxSy/CNF) film derived from zeolitic imidazolate framework is first prepared by a facile strategy. The composite material with two-dimensional leaf-shaped nanoarray neatly grown on the surface of carbon nanofibers is composed of CoS, CoS2, Co9S8, N-doped carbon nanosheets, and carbon nanofibers. It is found that the composite can not only increase the contact area with the electrolyte but also provide abundant redox-active sites and a Faraday capacitance for the entire electrode. The C,N-CoxSy/CNF composite exhibits excellent electrochemical properties, including a high capacity of up to 1080F g -1 at 1 A g -1 and a good rate capability (80.4 % from 1 A g -1 to 10 A g -1). A C,N-CoxSy/CNF//AC asymmetric supercapacitor device is assembled using C,N-CoxSy/CNF as the positive electrode and activated carbon as the negative electrode, showing high energy density (37.29 Wh kg -1@813.6 W kg -1) and good cycle stability (90.5% of initial specific capacitance at 10 g-1 after 5000 cycles). This C,N-CoxSy/CNF composite material may also be used as a potential electrode for future lithium-ion batteries, zinc-ion batteries, lithium-sulfur batteries, etc.

15.
Food Chem ; 370: 131353, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34788964

RESUMEN

A highly effective molecularly imprinted electrochemiluminescence sensor was constructed for prometryn determination in environmental and biological samples by using perovskite quantum dots coated with a molecularly imprinted silica layer (MIP/CsPbBr3-QDs) as the recognition and response element. MIP/CsPbBr3-QDs were immobilized on a glassy carbon electrode (GCE) through electropolymerization, and the electrochemiluminescence (ECL) response of MIP/CsPbBr3-QDs could be motivated under the condition of H2O2 as co-reactant. ECL signal was selectively quenched with prometryn by hindering electron transfer and directly proportional to the logarithm of prometryn concentration (0.10-500.0 µg/L) with a correlation coefficient of 0.9960. Limits of detection in fish and seawater samples were 0.010 µg/kg and 0.050 µg/L, respectively. Excellent recoveries of 88.0%-106.0% were acquired for fish and seawater samples with a relative standard deviation below 4.2%. The constructed MIECL sensor based on MIP/CsPbBr3-QDs showed good stability, accuracy, and precision for sensitive detection of prometryn in aquaculture products and environmental samples.


Asunto(s)
Impresión Molecular , Puntos Cuánticos , Animales , Compuestos de Calcio , Peróxido de Hidrógeno , Límite de Detección , Polímeros Impresos Molecularmente , Óxidos , Prometrina , Titanio
16.
Mitochondrial DNA B Resour ; 6(7): 2082-2083, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34212104

RESUMEN

We reported the complete mitochondrial genome (mitogenome) of broad-folded frog (Hylarana latouchii). This mitogenome is 17,007 bp in size and consists of 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and one non-coding sequence (D-loop). The total composition was 58.54% A + T and 41.46% G + C (T: 29.31%, C: 27.33%, A: 29.23%, and G: 14.13%). The phylogenetic analysis revealed that H. latouchii formed a clade with other two species of genus Hylarana. This mitogenomic sequence of H. latouchii provides useful data to study its population genetics and phylogeography.

17.
J Colloid Interface Sci ; 600: 118-126, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34010769

RESUMEN

Due to the inherent differences in surface tension between water and oil, it is a challenge to fabricate air superhydrophilic-superoleophobic materials despite their promising potential in the field of oil/water separation. Herein, a facile approach is developed to fabricate air superhydrophilic-superoleophobic SiO2 coating by combination of controllable modifying SiO2 nanoparticle surface by both hydrophilic groups (i.e., -OH groups) and oleophobic groups (i.e., fluorinated groups) with constructing porous and hierarchical structures. Hydroxyl-modified SiO2 nanoparticles (NPs) are synthesized using a base-catalysed procedure in the presence of ammonia or NaOH. Chitosan quaternary ammonium salt (HACC) is introduced to bind SiO2 by forming a unique hydrogen bond between HACC and -OH, followed by adding pentadecafluorooctanoic acid (PFOA) to complex with HACC to form fluorinated groups. The SiO2 coatings are fabricated on various substrates (e.g., glass, foam and Cu mesh) by spraying procedure and characterized using SEM, FTIR, XPS, etc. The contact angles of oils (e.g., pump oil, castor oil, corn oil, hexadecane and bean oil) and water on the coatings are over 150° and close to 0°, respectively. By optimization, the representative SiO2-coated Cu mesh displayed high-efficiency of 99.2% in separating water from mixture of water/pump oil, and high penetration flux of 1.41 × 104 L·m-2 ·h-1. Besides, the coating maintains its superhydrophilic-superoleophobic properties even after 110 cycles of sandpaper abrasion or after being immersed in water for 3 h. After 20 cycles of oil/water separation, the coating retains separation efficiency up to 97.93%. This study provides a new and universal protocol to fabricate unique superwetting surfaces with effective oil/water separation performance, long-term durability and outstanding reusability.


Asunto(s)
Mallas Quirúrgicas , Purificación del Agua , Interacciones Hidrofóbicas e Hidrofílicas , Aceites , Agua
18.
Onco Targets Ther ; 14: 2773-2787, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907420

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have been disclosed to exert important roles in human cancers, including gastric cancer (GC). CircRNA hsa_circ_0000144 was identified as an oncogene in GC development. The aim of our study was to explore the role of hsa_circ_0000144 in oxaliplatin (OXA) resistance of GC. METHODS: Expression levels of hsa_circ_0000144, microRNA-502-5p (miR-502-5p) and A disintegrin and metalloproteinase 9 (ADAM9) were examined by quantitative real-time PCR (RT-qPCR) or Western blot assay. The OXA resistance of GC cells was evaluated by Cell Counting Kit-8 (CCK-8) assay. Colony formation assay was performed to assess the colony formation capacity. Cell apoptosis was determined by flow cytometry and caspase 3 activity. And cell migration and invasion were detected by Transwell assay. Target association between miR-502-5p and hsa_circ_0000144 or ADAM9 was demonstrated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Moreover, role of hsa_circ_0000144 in vivo was analyzed by xenograft tumor assay. RESULTS: Hsa_circ_0000144 and ADAM9 were highly expressed, while miR-502-5p was downregulated in OXA-resistant GC tissues and cells. Depletion of hsa_circ_0000144 could inhibit OXA resistance, proliferation and metastasis in OXA-resistant GC cells, which was attenuated by miR-502-5p inhibition. Hsa_circ_0000144 sponged miR-502-5p to positively regulate ADAM9 expression. MiR-502-5p suppressed OXA resistance, proliferation and metastasis in OXA-resistant GC cells by targeting ADAM9. Hsa_circ_0000144 knockdown could hamper tumor growth in vivo. CONCLUSION: Hsa_circ_0000144 exerted inhibitory effects on OXA resistance, proliferation and metastasis of OXA-resistant GC cells by regulating miR-502-5p/ADAM9 axis, at least in part.

19.
Int J Biol Macromol ; 155: 42-49, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32224184

RESUMEN

The magnetic reduction-responsive alginate-based microcapsules (MRAMCs) have been developed successfully with thiolated alginate and oleic acid (OA) modified Fe3O4 nanoparticles (OA-Fe3O4 NPs) via a facile sonochemical method. The obtained MRAMCs could be used as multifunctional carriers for hydrophobic drugs targeted delivery and triggered release due to their merits, such as biocompatibility, non-immunogenicity, magnetic targeting drug delivery and reduction-responsive drug release. The MRAMCs were endowed with magnetic targeting function owing to the encapsulation of the superparamagnetic OA-Fe3O4 NPs, which was confirmed by transmission electron microscope and vibrating sample magnetometer. In addition, the MRAMCs presented excellent reduction-responsive release ability for hydrophobic drugs on account of the disulfide bonds in the wall of microcapsules, which were formed by the cross-linking of sulfhydryl groups on thiolated alginate under ulstrasonication. Meanwhile, confocal laser scanning microscopy measurement indicated that coumarin 6 acted as a hydrophobic model drug could be loaded into MRAMCs easily by dissolving in soybean oil before ultrasonication. Overall, these results demonstrated that MRAMCs would be a promising platform to build controllable drug delivery systems for targeted delivery and triggered release of hydrophobic drugs in biomedical application.


Asunto(s)
Alginatos/química , Cápsulas , Portadores de Fármacos , Nanopartículas de Magnetita/química , Células A549 , Cápsulas/síntesis química , Cápsulas/química , Cumarinas/farmacología , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Liberación de Fármacos , Células HeLa , Humanos , Ácido Oléico/química , Tiazoles/farmacología
20.
Nanoscale ; 12(3): 1269-1280, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31912834

RESUMEN

A full-spectrum solar cell exhibits potential as an effective strategy to enhance the absorption of incident solar light. To ensure the absorption capability of solar cells, trapping structures or plasmons have emerged as two main ways of utilizing the full spectrum of solar energy. First, recent progress in the full-spectrum solar cells based on NCs was reviewed from the aspects of trapping structures and plasmon design. Moreover, the effects of light trapping and surface plasmon resonance on light absorption and photoelectronic conversion were emphasized and discussed. Finally, the application prospect of their combination in the field of full-spectrum solar cells was examined. It was pointed out that the deep exploration of the physical mechanism of photoelectric conversion, controllable preparation of the interface and stability of composite structures will become the main directions of future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...