Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202406153, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730419

RESUMEN

Innovative molecule design strategy holds promise for the development of next-generation acceptor materials for efficient organic solar cells with low non-radiative energy loss (ΔEnr). In this study, we designed and prepared three novel acceptors, namely BTP-Biso, BTP-Bme and BTP-B, with sterically structured triisopropylbenzene, trimethylbenzene and benzene as side chains inserted into the shoulder of the central core. The progressively enlarged steric hindrance from BTP-B to BTP-Bme and BTP-Biso induces suppressed intramolecular rotation and altered the molecule packing mode in their aggregation states, leading to significant changes in absorption spectra and energy levels. By regulating the intermolecular π-π interactions, BTP-Bme possesses relatively reduced non-radiative recombination rate and extended exciton diffusion lengths. The binary device based on PB2:BTP-Bme exhibits an impressive power conversion efficiency (PCE) of 18.5% with a low ΔEnr of 0.19 eV. Furthermore, the ternary device comprising PB2:PBDB-TF:BTP-Bme achieves an outstanding PCE of 19.3%. The molecule design strategy in this study proposed new perspectives for developing high-performance acceptors with low ΔEnr in OSCs.

2.
Int J Biol Macromol ; 267(Pt 1): 131488, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615862

RESUMEN

This study aimed to reveal the underlying mechanisms of the differences in viscoelasticity and digestibility between mung bean starch (MBS) and proso millet starch (PMS) from the viewpoint of starch fine molecular structure. The contents of amylopectin B2 chains (14.94-15.09 %), amylopectin B3 chains (14.48-15.07 %) and amylose long chains (183.55-198.84) in MBS were significantly higher than PMS (10.45-10.76 %, 12.48-14.07 % and 70.59-88.03, respectively). MBS with higher amylose content (AC, 28.45-31.80 %) not only exhibited a lower weight-average molar mass (91,750.65-128,120.44 kDa) and R1047/1022 (1.1520-1.1904), but also was significantly lower than PMS in relative crystallinity (15.22-23.18 %, p < 0.05). MBS displayed a higher storage modulus (G') and loss modulus (G'') than PMS. Although only MBS-1 showed two distinct and discontinuous phases, MBS exhibited a higher resistant starch (RS) content than PMS (31.63-39.23 %), with MBS-3 having the highest RS content (56.15 %). Correlation analysis suggested that the amylopectin chain length distributions and AC played an important role in affecting the crystal structure, viscoelastic properties and in vitro starch digestibility of MBS and PMS. These results will provide a theoretical and scientific basis for the development of starch science and industrial production of low glycemic index starchy food.


Asunto(s)
Amilopectina , Amilosa , Almidón , Vigna , Amilosa/química , Amilosa/análisis , Amilopectina/química , Viscosidad , Vigna/química , Almidón/química , Almidón/metabolismo , Elasticidad , Digestión , Peso Molecular
3.
Angew Chem Int Ed Engl ; 63(22): e202404297, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38526996

RESUMEN

The development of high-efficiency organic solar cells (OSCs) processed from non-halogenated solvents is crucially important for their scale-up industry production. However, owing to the difficulty of regulating molecular aggregation, there is a huge efficiency gap between non-halogenated and halogenated solvent processed OSCs. Herein, we fabricate o-xylene processed OSCs with approaching 20 % efficiency by incorporating a trimeric guest acceptor named Tri-V into the PM6:L8-BO-X host blend. The incorporation of Tri-V effectively restricts the excessive aggregation of L8-BO-X, regulates the molecular packing and optimizes the phase-separation morphology, which leads to mitigated trap density states, reduced energy loss and suppressed charge recombination. Consequently, the PM6:L8-BO-X:Tri-V-based device achieves an efficiency of 19.82 %, representing the highest efficiency for non-halogenated solvent-processed OSCs reported to date. Noticeably, with the addition of Tri-V, the ternary device shows an improved photostability than binary PM6:L8-BO-X-based device, and maintains 80 % of the initial efficiency after continuous illumination for 1380 h. This work provides a feasible approach for fabricating high-efficiency, stable, eco-friendly OSCs, and sheds new light on the large-scale industrial production of OSCs.

4.
Angew Chem Int Ed Engl ; 63(17): e202401066, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38450828

RESUMEN

In the field of organic photovoltaics (OPVs), significant progress has been made in tailoring molecular structures to enhance the open-circuit voltage and the short-circuit current density. However, there remains a crucial gap in the development of coordinated material design strategies focused on improving the fill factor (FF). Here, we introduce a molecular design strategy that incorporates electrostatic potential fluctuation to design organic photovoltaic materials. By reducing the fluctuation amplitude of IT-4F, we synthesized a new acceptor named ITOC6-4F. When using PBQx-TF as a donor, the ITOC6-4F-based cell shows a markedly low recombination rate constant of 0.66×10-14 cm3 s-1 and demonstrates an outstanding FF of 0.816, both of which are new records for binary OPV cells. Also, we find that a small fluctuation amplitude could decrease the energetic disorder of OPV cells, reducing energy loss. Finally, the ITOC6-4F-based cell creates the highest efficiency of 16.0 % among medium-gap OPV cells. Our work holds a vital implication for guiding the design of high-performance OPV materials.

5.
Adv Mater ; : e2310390, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433157

RESUMEN

Component distribution within the photoactive layer dictates the morphology and electronic structure and substantially influences the performance of organic solar cells (OSCs). In this study, a molecular design strategy is introduced to manipulate component and energetics distribution by adjusting side-chain polarity. Two non-fullerene acceptors (NFAs), ITIC-16F and ITIC-E, are synthesized by introducing different polar functional substituents onto the side chains of ITIC. The alterations result in different distribution tendencies in the bulk heterojunction film: ITIC-16F with intensified hydrophobicity aligns predominantly with the top surface, while ITIC-E with strong hydrophilicity gravitates toward the bottom. This divergence directly impacts the vertical distribution of the excitation energy levels, thereby influencing the excitation kinetics over extended time periods and larger spatial ranges including enhanced diffusion-mediated exciton dissociation and stimulated charge carrier transport. Benefitting from the favorable energy distribution, the device incorporating ITIC-E into the PBQx-TF:eC9-2Cl blend showcases an impressive power conversion efficiency of 19.4%. This work highlights side-chain polarity manipulation as a promising strategy for designing efficient NFA molecules and underscores the pivotal role of spatial energetics distribution in OSC performance.

6.
Food Res Int ; 180: 114065, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395582

RESUMEN

Tartary buckwheat is rich in nutrients and its protein supports numerous biological functions. However, the digestibility of Tartary buckwheat protein (TBP) poses a significant limitation owing to its inherent structure. This study aimed to assess the impact of high moisture extrusion (HME, 60 % moisture content) on the structural and physicochemical attributes, as well as the in vitro digestibility of TBP. Our results indicated that TBP exhibited unfolded and amorphous microstructures after HME. The protein molecular weight of TBP decreased after HME, and a greater degradation was observed at 70 °C than 100 °C. In particular, HME at 70 °C caused an almost complete disappearance of bands near 35 kDa compared with HME at 100 °C. In addition, compared with native TBP (NTBP, 44.53 µmol/g protein), TBP subjected to HME at 70 °C showed a lower disulfide bond (SS) content (42.67 µmol/g protein), whereas TBP subjected to HME at 100 °C demonstrated a higher SS content (45.70 µmol/g protein). These changes endowed TBP with good solubility (from 55.96 % to 83.31 % at pH 7), foaming ability (20.00 %-28.57 %), and surface hydrophobicity (8.34-23.07). Furthermore, the emulsifying activity (EA) and in vitro digestibility are closely related to SS content. Notably, extruded TBP (ETBP) obtained at 70 °C exhibited higher EA and digestibility than NTBP, whereas ETBP obtained at 100 °C showed the opposite trend. Consequently, HME (especially at 70 °C) demonstrated significant potential as a processing technique for improving the functional and digestive properties of TBP.


Asunto(s)
Fagopyrum , Fagopyrum/química , Solubilidad , Digestión , Proteínas de Unión al GTP/metabolismo
7.
Adv Mater ; 36(21): e2313532, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38386402

RESUMEN

Developing efficient organic solar cells (OSCs) with thick active layers is crucial for roll-to-roll printing. However, thicker layers often result in lower efficiency. This study tackles this challenge using a polymer adsorption strategy combined with a layer-by-layer approach. Incorporating insulator polystyrene (PS) into the PM6:L8-BO system creates PM6+PS:L8-BO blends, effectively suppressing trap states and extending exciton diffusion length in the mixed donor domain. Adding insulating polymers with benzene rings to the donor enhances π-π stacking of donors, boosting intermolecular interactions and electron wave function overlap. This results in more orderly molecular stacking, longer exciton lifetimes, and higher diffusion lengths. The promoted long-range exciton diffusion leads to high power conversion efficiencies of 19.05% and 18.15% for PM6+PS:L8-BO blend films with 100 and 300 nm thickness, respectively, as well as a respectable 16.00% for 500 nm. These insights guide material selection for better exciton diffusion, and offer a method for thick-film OSC fabrication, promoting a prosperous future for practical OSC mass production.

8.
Angew Chem Int Ed Engl ; 63(15): e202400565, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38291011

RESUMEN

Organic solar cells (OSCs) are still suffering from the low light utilization and unstable under ultraviolet irradiation. To tackle these challenges, we design and synthesize a non-fused acceptor based on 1-(2-butyloctyl)-1H-pyrrole as π-bridge unit, denoted as GS70, which serves as active layer in the front-cell for constructing tandem OSCs with a parallel configuration. Benefiting from the well-complementary absorption spectra with the rear-cell, GS70-based parallel tandem OSCs exhibit an improved photoelectron response over the range between 600-700 nm, yielding a high short-circuit current density of 28.4 mA cm-2. The improvement in light utilization translates to a power conversion efficiency of 19.4 %, the highest value among all parallel tandem OSCs. Notably, owing to the intrinsic stability of GS70, the manufactured parallel tandem OSCs retain 84.9 % of their initial PCE after continuous illumination for 1000 hours. Overall, this work offers novel insight into the molecular design of low-cost and stability non-fused acceptors, emphasizing the importance of adopting a parallel tandem configuration for achieving efficient light harvesting and improved photostability in OSCs.

9.
Angew Chem Int Ed Engl ; 63(10): e202318143, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38190621

RESUMEN

In the development of high-performance organic solar cells (OSCs), the self-organization of organic semiconductors plays a crucial role. This study focuses on the precisely manipulation of molecular assemble via tuning alkyl side-chain topology in a series of low-cost nonfused-ring electron acceptors (NFREAs). Among the three NFREAs investigated, DPA-4, which possesses an asymmetric alkyl side-chain length, exhibits a tight packing in the crystal and high crystallinity in the film, contributing to improved electron mobility and favorable film morphology for DPA-4. As a result, the OSC device based on DPA-4 achieves an excellent power conversion efficiency of 16.67 %, ranking among the highest efficiencies for NFREA-based OSCs.

10.
Angew Chem Int Ed Engl ; 63(9): e202317892, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38206554

RESUMEN

Iodination has unlocked new potentials in organic photovoltaics (OPVs). A newly designed and synthesized iodinated non-fullerene acceptor, BO-4I, showcases exceptional excitation delocalization property with the exciton diffusion length increased to 80 nm. The enhanced electron delocalization property is attributed to the larger atomic radius and electron orbit of the iodine atom, which facilitates the formation of intra-moiety excitations in the acceptor phase. This effectively circumvents the charge transfer state-related recombination mechanisms, leading to a substantial reduction in non-radiative energy loss (ΔEnr ). As a result, OPV cell based on PBDB-TF : BO-4I achieves an impressive efficiency of 18.9 % with a notable ΔEnr of 0.189 eV, markedly surpassing their fluorinated counterparts. This contribution highlights the pivotal role of iodination in reducing energy loss, thereby affirming its potential as a key strategy in the development of advanced next-generation OPV cells.

11.
Adv Mater ; 36(1): e2305424, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37541659

RESUMEN

All-polymer solar cells (all-PSCs) possess excellent operation stability and mechanical robustness than other types of organic solar cells, thereby attracting considerable attention for wearable flexible electron devices. However, the power conversion efficiencies (PCEs) of all-PSCs are still lagging behind those of small-molecule-acceptor-based systems owing to the limitation of photoactive materials and unsatisfactory blend morphology. In this work, a novel terpolymer, denoted as PBDB-TFCl (poly4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b″]dithiophene-1,3-bis(2-ethylhexyl)-5,7-di(thiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c″]dithiophene-4,8-dione-4,8-bis(4-chloro-5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene), is used as an electron donor coupled with a ternary strategy to optimize the performance of all-PSCs. The addition of PBDB-TCl unit deepens the highest occupied molecular orbital energy level, reducing voltage losses. Moreover, the introduction of the guest donor (D18-Cl) effectively regulates the phase-transition kinetics of PBDB-TFCl:D18-Cl:PY-IT during the film formation, leading to ideal size of aggregations and enhanced crystallinity. PBDB-TFCl:D18-Cl:PY-IT devices exhibit a PCE of 18.6% (certified as 18.3%), judged as the highest value so far obtained with all-PSCs. Besides, based on the ternary active layer, the manufactured 36 cm2 flexible modules exhibit a PCE of 15.1%. Meanwhile, the ternary PSCs exhibit superior photostability and mechanical stability. In summary, the proposed strategy, based on molecular design and the ternary strategy, allows optimization of the all-polymer blend morphology and improvement of the photovoltaic performance for stable large-scale flexible PSCs.

12.
Angew Chem Int Ed Engl ; 62(50): e202314362, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37877452

RESUMEN

Organic photovoltaic (OPV) cells, with highly tunable light-response ranges, offer significant potential for use in driving low-power consumption off-grid electronics in multi-scenarios. However, development of photoactive layer materials that can meet simultaneously the requirements of diverse irradiation conditions is a still challenging task. Herein, a low-cost fully non-fused acceptor (denoted as GS60) featuring well-matched absorption spectra with solar, scattered light and artificial light radiation was designed and synthesized. Systematic characterizations revealed that GS60 possessed outstanding photoelectron properties and ideal morphology, which resulted in reduced voltage loss and suppressed charge recombination. By blending with a non-fused ring polymer PTVT-T, the as-obtained GS60 based OPV cells achieved a good power conversion efficiency (PCE) of 14.1 %, a high value for the cells based on non-fused ring bulk heterojunction. Besides, manufactured large-area OPV modules based on PTVT-T:GS60 yielded PCEs of 11.2 %, 11.8 %, 12.1 %, 23.1 %, and 20.3 % under irradiation of AM 1.5G, natural light of cloudy weather, natural light in shadow, laser and indoor, respectively. The PTVT-T:GS60 devices exhibited considerable potential in terms of improving photostability and reducing material cost. Overall, this work provides novel insight into the molecular design of low-cost non-fused ring acceptors, and extended potential of medium band gap acceptors based OPV cells used in various application scenarios.

13.
Adv Mater ; 35(28): e2301906, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37022923

RESUMEN

Morphology control greatly influences the power conversion efficiency (PCE) and long-term stability of all-polymer solar cells (all-PSCs); however, it remains challenging owing to their complex crystallization behavior. Herein, a small amount of Y6 (2 wt%) is introduced as a solid additive into a PM6:PY-DT blend. Y6 remained inside the active layer and interacted with PY-DT to form a well-mixed phase. Increased molecular packing, enlarged phase separation size, and decreased trap density are observed for the Y6-processed PM6:PY-DT blend. The corresponding devices showed simultaneously improved short-circuit current and fill factor, achieving a high PCE of over 18% and excellent long-term stability, with a T80 lifetime of 1180 h and an extrapolated T70 lifetime of 9185 h at maximum power point tracking (MPP) conditions under continuous one-sun illumination. This Y6-assisted strategy is successfully applied to other all-polymer blends, demonstrating its universality for all-PSCs. This work paves a new way for the fabrication of all-PSCs with high efficiency and superior long-term stability.


Asunto(s)
Vendajes , Polímeros , Cristalización
14.
Adv Mater ; 35(25): e2301583, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36964963

RESUMEN

Morphology optimization is critical for achieving high efficiency and stable bulk-heterojunction (BHJ) organic solar cells (OSCs). Herein, the use of 3,5-dichlorobromobenzene (DCBB) with high volatility and low cost to manipulate evolution of the BHJ morphology and improve the operability and photostability of OSCs is proposed. Systematic simulations reveal the charge distribution of DCBB and its non-covalent interaction with the active layer materials. The addition of DCBB can effectively tune the aggregation of PBQx-TF:eC9-2Cl during film formation, resulting in a favorable phase separation and a reinforced molecular packing. As a result, a power conversion efficiency of 19.2% (certified as 19.0% by the National Institute of Metrology) for DCBB-processed PBQx-TF:eC9-2Cl-based OSCs, which is the highest reported value for binary OSCs, is obtained. Importantly, the DCBB-processed devices exhibit superior photostability and have thus considerable application potential in the printing of large-area devices, demonstrating outstanding universality in various BHJ systems. The study provides a facile approach to control the BHJ morphology and enhances the photovoltaic performance of OSCs.

15.
ACS Appl Mater Interfaces ; 15(9): 12109-12118, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36813758

RESUMEN

The charge transfer between the donor and acceptor determines the photogenerated carrier density in organic solar cells. However, a fundamental understanding regarding the charge transfer at donor/acceptor interfaces with high-density traps has not been fully addressed. Herein, a general correlation between trap densities and charge transfer dynamics is established by adopting a series of high-efficiency organic photovoltaic blends. It is found that the electron transfer rates are reduced with increased trap densities, while the hole transfer rates are independent of trap states. The local charges captured by traps can induce potential barrier formation around recombination centers, leading to the suppression of electron transfer. For the hole transfer process, the thermal energy provides a sufficient driving force, which ensures an efficient transfer rate. As a result, a 17.18% efficiency is obtained for PM6:BTP-eC9-based devices with the lowest interfacial trap densities. This work highlights the importance of interfacial traps in charge transfer processes and proposes an underlying insight into the charge transfer mechanism at nonideal interfaces in organic heterostructures.

16.
Adv Mater ; 35(16): e2210865, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36715105

RESUMEN

Efficient photon utilization is key to achieving high-performance organic photovoltaic (OPV) cells. In this study, a multiscale fibril network morphology in a PBQx-TCl:PBDB-TF:eC9-2Cl-based system is constructed by regulating donor and acceptor phase-transition kinetics. The distinctive phase-transition process and crystal size are systematically investigated. PBQx-TCl and eC9-2Cl form fibril structures with diameters of ≈25 nm in ternary films. Additionally, fine fibrils assembled by PBDB-TF are uniformly distributed over the fibril networks of PBQx-TCl and eC9-2Cl. The ideal multiscale fibril network morphology enables the ternary system to achieve superior charge transfer and transport processes compared to binary systems; these improvements promote enhanced photon utilization efficiency. Finally, a high power conversion efficiency of 19.51% in a single-junction OPV cell is achieved. The external quantum efficiency of the optimized ternary cell exceeds 85% over a wide range of 500-800 nm. A tandem OPV cell is also fabricated to increase solar photon absorption. The tandem cell has an excellent PCE of more than 20%. This study provides guidance for constructing an ideal multiscale fibril network morphology and improving the photon utilization efficiency of OPV cells.

17.
Adv Mater ; 35(8): e2208165, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36462166

RESUMEN

Although all-polymer solar cells (all-PSCs) show great commercialization prospects, their power conversion efficiencies (PCEs) still fall behind their small molecule acceptor-based counterparts. In all-polymer blends, the optimized morphology and high molecular ordering are difficult to achieve since there is troublesome competition between the crystallinity of the polymer donor and acceptor during the film-formation process. Therefore, it is challenging to improve the performance of all-PSCs. Herein, a ternary strategy is adopted to modulate the morphology and the molecular crystallinity of an all-polymer blend, in which PM6:PY-82 is selected as the host blend and PY-DT is employed as a guest component. Benefiting from the favorable miscibility of the two acceptors and the higher regularity of PY-DT, the ternary matrix features a well-defined fibrillar morphology and improved molecular ordering. Consequently, the champion PM6:PY-82:PY-DT device produces a record-high PCE of 18.03%, with simultaneously improved open-circuit voltage, short-circuit current and fill factor in comparison with the binary devices. High-performance large-area (1 cm2 ) and thick-film (300 nm) all-PSCs are also successfully fabricated with PCEs of 16.35% and 15.70%, respectively.Moreover, 16.5 cm2 organic solar module affords an encouraging PCE of 13.84% when using the non-halogenated solvent , showing the great potential of "Lab-to-Fab" transition of all-PSCs.

18.
ACS Nano ; 16(8): 13049-13056, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35943139

RESUMEN

Achiral organic materials show nearly negligible orbit angular momentum, whereas organic ferrimagnets with chirality and reduced electron-lattice scattering could fundamentally bridge the gap between ferromagnetism and antiferromagnetism in the rapidly emerging field of ferrimagnetic spintronics. In this work, we report enantiomeric organic chiral ferrimagnets, where the chirality results from the molecular torsion by propeller-like arrangement of the donor and acceptor molecules. The ferrimagnetism results from the difference in electron-phonon coupling of the donor and acceptor inside the chiral crystals. Because the spin polarization is significantly dependent on the chirality, the magnetization of right-handed organic chiral ferrimagnetic crystals is larger than that of left-handed ones by 300% at 10 K. In addition, the processes of both excitation and recombination are strongly related to spin, phonon, and chiral orbit in these chiral ferrimagnets. Overall, both the organic chiral ferrimagnetism and spin chiroptical activities may substantially enrich the field of organic spintronics.

19.
Nano Lett ; 22(13): 5481-5486, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35730662

RESUMEN

The response of crystal structure to external stimuli provides potential applications in the areas of detection, diagnosis, and repair. In this work, we fabricate two allotropic organic cocrystals, with different space groups and lattice parameters, with identical donor and acceptor molecules inside them. Under external stimuli, lattice vibration and electron-phonon coupling present pronounced differences in these two types of crystals, where different strengths of spin polarizations are observed. Furthermore, due to pronounced differences in coupling between lattice and spin inside the allotropic charge transfer crystals, the magnetic field presents a discrepant tunability on both transmission and fluorescence lifetimes. Through decreasing temperature or applying external electric field, the electron-phonon coupling coefficient presents a decreasing tendency, which will affect the dipole and dielectric constant in the allotropic crystals differently.


Asunto(s)
Electrones , Fonones , Electricidad , Campos Magnéticos , Vibración
20.
Adv Mater ; 34(26): e2110147, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35438225

RESUMEN

The ternary strategy has been widely identified as an effective approach to obtain high-efficiency organic solar cells (OSCs). However, for most ternary OSCs, the nonradiative voltage loss lies between those of the two binary devices, which limits further efficiency improvements. Herein, an asymmetric guest acceptor BTP-2F2Cl is designed and incorporated into a PM1:L8-BO host blend. Compared with the L8-BO neat film, the L8-BO:BTP-2F2Cl blend film shows higher photoluminescence quantum yield and larger exciton diffusion length. Introducing BTP-2F2Cl into the host blend extends its absorption spectrum, improves the molecular packing of host materials, and suppresses the nonradiative charge recombination of the ternary OSCs. Consequently, the power conversion efficiency is improved up to 19.17% (certified value 18.7%), which represents the highest efficiency value reported for single-junction OSCs so far. The results show that improving the exciton behaviors is a promising approach to reducing the nonradiative voltage loss and realizing high-performance OSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...